On Ontology Matching Problems

Ontologies are nowadays used in many domains such as Semantic Web, information systems… to represent meaning of data and data sources. In the framework of knowledge management in an heterogeneous organization, the materialization of the organizational memory in a " corporate semantic web " may require to integrate the various ontologies of the different groups of this organization. To be able to build a corporate semantic web in an heterogeneous, multi-communities organization, it is essential to have methods for comparing, aligning, integrating or mapping different ontologies. This paper proposes a new algorithm for matching two ontologies based on all the information available about the given ontologies (e.g. their concepts, relations, information about the structure of each hierarchy of concepts, or of relations), applying TF/IDF scheme (a method widely used in the information retrieval community) and integrating WordNet (an electronic lexical database) in the process of ontology matching.

[1]  James A. Hendler,et al.  The Semantic Web" in Scientific American , 2001 .

[2]  Erhard Rahm,et al.  Similarity flooding: a versatile graph matching algorithm and its application to schema matching , 2002, Proceedings 18th International Conference on Data Engineering.

[3]  Dan Brickley,et al.  Resource description framework (RDF) schema specification , 1998 .

[4]  Erhard Rahm,et al.  Generic Schema Matching with Cupid , 2001, VLDB.

[5]  Fausto Giunchiglia,et al.  Semantic Matching: Algorithms and Implementation , 2007, J. Data Semant..

[6]  Pedro M. Domingos,et al.  Learning to map between ontologies on the semantic web , 2002, WWW '02.

[7]  Heiner Stuckenschmidt,et al.  Ontology-Based Integration of Information - A Survey of Existing Approaches , 2001, OIS@IJCAI.

[8]  Steffen Staab,et al.  Measuring Similarity between Ontologies , 2002, EKAW.

[9]  Pradeep Ravikumar,et al.  A Comparison of String Distance Metrics for Name-Matching Tasks , 2003, IIWeb.

[10]  Pedro M. Domingos,et al.  Reconciling schemas of disparate data sources: a machine-learning approach , 2001, SIGMOD '01.

[11]  Erhard Rahm,et al.  A survey of approaches to automatic schema matching , 2001, The VLDB Journal.

[12]  Dan Brickley,et al.  Resource Description Framework (RDF) Model and Syntax Specification , 2002 .

[13]  George A. Miller,et al.  WordNet: A Lexical Database for English , 1995, HLT.

[14]  Rose Dieng,et al.  Comparison of Personal Ontologies Represented through Conceptual Graphs , 1998, ECAI.

[15]  Mark A. Musen,et al.  Anchor-PROMPT: Using Non-Local Context for Semantic Matching , 2001, OIS@IJCAI.

[16]  Olivier Corby,et al.  Semantic Web and Multi-Agents Approach to Corporate Memory Management , 2002, Intelligent Information Processing.

[17]  Rose Dieng,et al.  MULTIKAT, a Tool for Comparing Knowledge of Multiple Experts , 1998, ICCS.