Obtaining the efficient set of nonlinear biobjective optimization problems via interval branch-and-bound methods
暂无分享,去创建一个
[1] S. Ruzika,et al. Approximation Methods in Multiobjective Programming , 2005 .
[2] R. Baker Kearfott,et al. On proving existence of feasible points in equality constrained optimization problems , 1998, Math. Program..
[3] Jared L. Cohon,et al. Multiobjective programming and planning , 2004 .
[4] Blas Pelegrín,et al. Planar Location and Design of a New Facility with Inner and Outer Competition: An Interval Lexicographical-like Solution Procedure , 2007 .
[5] George O. Wesolowsky,et al. FACILITIES LOCATION: MODELS AND METHODS , 1988 .
[6] Serpil Sayin,et al. Measuring the quality of discrete representations of efficient sets in multiple objective mathematical programming , 2000, Math. Program..
[7] M.Cs. Markót,et al. New interval methods for constrained global optimization , 2006, Math. Program..
[8] D. J. White,et al. A Bibliography on the Applications of Mathematical Programming Multiple-objective Methods , 1990 .
[9] A. Seeger. Recent advances in optimization , 2006 .
[10] Yasuo Fujii,et al. Multicriterion optimization using interval analysis , 1990, Computing.
[11] A. Volgenant,et al. Facility location: a survey of applications and methods , 1996 .
[12] Matthias Ehrgott,et al. Multiple criteria decision analysis: state of the art surveys , 2005 .
[13] R. Baker Kearfott,et al. Improved and Simplified Validation of Feasible Points , 2005 .
[14] David L. Huff,et al. Defining and Estimating a Trading Area , 1964 .
[15] Tibor Csendes,et al. Empirical Investigation of the Convergence Speed of Inclusion Functions in a Global Optimization Context , 2005, Reliab. Comput..
[16] Blas Pelegrín,et al. Estimating actual distances by norm functions: a comparison between the lk, p, theta-norm and the lb1, b2, theta-norm and a study about the selection of the data set , 2002, Comput. Oper. Res..
[17] Eldon Hansen,et al. Global optimization using interval analysis , 1992, Pure and applied mathematics.
[18] Ronald R. Willis,et al. New Computer Methods for Global Optimization , 1990 .
[19] Zvi Drezner,et al. Facility location - applications and theory , 2001 .
[20] Milan Zeleny,et al. Multiple Criteria Decision Making (MCDM) , 2004 .
[21] R. S. Laundy,et al. Multiple Criteria Optimisation: Theory, Computation and Application , 1989 .
[22] Thomas Hanne,et al. On the Development and Future Aspects of Vector Optimization and MCDM , 1997 .
[23] Kathrin Klamroth,et al. An MCDM approach to portfolio optimization , 2004, Eur. J. Oper. Res..
[24] Gilbert Laporte,et al. Competitive Location Models: A Framework and Bibliography , 1993, Transp. Sci..
[25] Avijit Ghosh,et al. FRANSYS: a franchise distribution system location model , 1991 .
[26] O. Knüppel,et al. PROFIL/BIAS—A fast interval library , 1994, Computing.
[27] José Fernández,et al. Obtaining an outer approximation of the efficient set of nonlinear biobjective problems , 2007, J. Glob. Optim..
[28] Yacov Y. Haimes,et al. Multiobjective Decision Making: Theory and Methodology , 1983 .
[29] Matthias Ehrgott,et al. Constructing robust crew schedules with bicriteria optimization , 2002 .
[30] Peiliang Xu. A hybrid global optimization method: the multi-dimensional case , 2003 .
[31] R. B. Kearfott. Rigorous Global Search: Continuous Problems , 1996 .
[32] Inmaculada García,et al. AMIGO: Advanced Multidimensional Interval analysis Global Optimization algorithm , 2004 .
[33] Eduardo Conde,et al. Location of a Semiobnoxious Facility: A Biobjective Approach , 1997 .
[34] Matthias Ehrgott,et al. Multicriteria Optimization , 2005 .
[35] José Fernández,et al. Empirical convergence speed of inclusion functions for facility location problems , 2007 .
[36] Fernando Alonso,et al. Intensity-modulated radiotherapy – a large scale multi-criteria programming problem , 2003, OR Spectr..
[37] P. Pardalos,et al. Handbook of global optimization , 1995 .
[38] Matthias Ehrgott,et al. Saddle Points and Pareto Points in Multiple Objective Programming , 2005, J. Glob. Optim..
[39] Blas Pelegrín,et al. Solving a Huff-like competitive location and design model for profit maximization in the plane , 2007, Eur. J. Oper. Res..
[40] Matthias Ehrgott,et al. Multicriteria Optimization (2. ed.) , 2005 .
[41] Marc J. Schniederjans,et al. A multi-criteria modeling approach to jury selection , 2005 .
[42] Frank Plastria,et al. Static competitive facility location: An overview of optimisation approaches , 2001, Eur. J. Oper. Res..
[43] Ralph E. Steuer,et al. A multi-period, multiple criteria optimization system for manpower planning☆ , 1988 .
[44] Justo Puerto,et al. MCDM Location Problems , 2005 .
[45] Ulrich W. Kulisch,et al. C++ Toolbox for Verified Scientific Computing I: Basic Numerical Problems , 1997 .
[46] Kaisa Miettinen,et al. Nonlinear multiobjective optimization , 1998, International series in operations research and management science.
[47] Ulrich W. Kulisch,et al. C++ Toolbox for Verified Computing I: Basic Numerical Problems Theory, Algorithms, and Programs , 1997 .
[48] Per Joakim Agrell,et al. An interactive multicriteria decision model for multipurpose reservoir management: the Shellmouth Reservoir , 1998 .
[49] Blas Pelegrín,et al. Reconciling Franchisor and Franchisee: A Planar Biobjective Competitive Location and Design Model , 2006 .
[50] Jacques-François Thisse,et al. Economics of location: A selective survey , 1999, Comput. Oper. Res..