Obtaining the efficient set of nonlinear biobjective optimization problems via interval branch-and-bound methods

Abstract Obtaining a complete description of the efficient set of multiobjective optimization problems can be of invaluable help to the decision-maker when the objectives conflict and a solution has to be chosen. In this paper we present an interval branch-and-bound algorithm which aims at obtaining a tight outer approximation of the whole efficient set of nonlinear biobjective problems. The method enhances the performance of a previous rudimentary algorithm thanks to the use of new accelerating devices, namely, three new discarding tests. Some computational studies on a set of competitive location problems demonstrate the efficiency of the discarding tests, as well as the superiority of the new algorithm, both in time and in quality of the outer approximations of the efficient set, as compared to another method, an interval constraint-like algorithm, with the same aim. Furthermore, we also give some theoretical results of the method, which show its good properties, both in the limit (when the tolerances are set equal to zero and the algorithm does not stop) and when the algorithm stops after a finite number of steps (when we use positive tolerances). A key point in the approach is that, thanks to the use of interval analysis tools, it can be applied to nearly any biobjective problem.

[1]  S. Ruzika,et al.  Approximation Methods in Multiobjective Programming , 2005 .

[2]  R. Baker Kearfott,et al.  On proving existence of feasible points in equality constrained optimization problems , 1998, Math. Program..

[3]  Jared L. Cohon,et al.  Multiobjective programming and planning , 2004 .

[4]  Blas Pelegrín,et al.  Planar Location and Design of a New Facility with Inner and Outer Competition: An Interval Lexicographical-like Solution Procedure , 2007 .

[5]  George O. Wesolowsky,et al.  FACILITIES LOCATION: MODELS AND METHODS , 1988 .

[6]  Serpil Sayin,et al.  Measuring the quality of discrete representations of efficient sets in multiple objective mathematical programming , 2000, Math. Program..

[7]  M.Cs. Markót,et al.  New interval methods for constrained global optimization , 2006, Math. Program..

[8]  D. J. White,et al.  A Bibliography on the Applications of Mathematical Programming Multiple-objective Methods , 1990 .

[9]  A. Seeger Recent advances in optimization , 2006 .

[10]  Yasuo Fujii,et al.  Multicriterion optimization using interval analysis , 1990, Computing.

[11]  A. Volgenant,et al.  Facility location: a survey of applications and methods , 1996 .

[12]  Matthias Ehrgott,et al.  Multiple criteria decision analysis: state of the art surveys , 2005 .

[13]  R. Baker Kearfott,et al.  Improved and Simplified Validation of Feasible Points , 2005 .

[14]  David L. Huff,et al.  Defining and Estimating a Trading Area , 1964 .

[15]  Tibor Csendes,et al.  Empirical Investigation of the Convergence Speed of Inclusion Functions in a Global Optimization Context , 2005, Reliab. Comput..

[16]  Blas Pelegrín,et al.  Estimating actual distances by norm functions: a comparison between the lk, p, theta-norm and the lb1, b2, theta-norm and a study about the selection of the data set , 2002, Comput. Oper. Res..

[17]  Eldon Hansen,et al.  Global optimization using interval analysis , 1992, Pure and applied mathematics.

[18]  Ronald R. Willis,et al.  New Computer Methods for Global Optimization , 1990 .

[19]  Zvi Drezner,et al.  Facility location - applications and theory , 2001 .

[20]  Milan Zeleny,et al.  Multiple Criteria Decision Making (MCDM) , 2004 .

[21]  R. S. Laundy,et al.  Multiple Criteria Optimisation: Theory, Computation and Application , 1989 .

[22]  Thomas Hanne,et al.  On the Development and Future Aspects of Vector Optimization and MCDM , 1997 .

[23]  Kathrin Klamroth,et al.  An MCDM approach to portfolio optimization , 2004, Eur. J. Oper. Res..

[24]  Gilbert Laporte,et al.  Competitive Location Models: A Framework and Bibliography , 1993, Transp. Sci..

[25]  Avijit Ghosh,et al.  FRANSYS: a franchise distribution system location model , 1991 .

[26]  O. Knüppel,et al.  PROFIL/BIAS—A fast interval library , 1994, Computing.

[27]  José Fernández,et al.  Obtaining an outer approximation of the efficient set of nonlinear biobjective problems , 2007, J. Glob. Optim..

[28]  Yacov Y. Haimes,et al.  Multiobjective Decision Making: Theory and Methodology , 1983 .

[29]  Matthias Ehrgott,et al.  Constructing robust crew schedules with bicriteria optimization , 2002 .

[30]  Peiliang Xu A hybrid global optimization method: the multi-dimensional case , 2003 .

[31]  R. B. Kearfott Rigorous Global Search: Continuous Problems , 1996 .

[32]  Inmaculada García,et al.  AMIGO: Advanced Multidimensional Interval analysis Global Optimization algorithm , 2004 .

[33]  Eduardo Conde,et al.  Location of a Semiobnoxious Facility: A Biobjective Approach , 1997 .

[34]  Matthias Ehrgott,et al.  Multicriteria Optimization , 2005 .

[35]  José Fernández,et al.  Empirical convergence speed of inclusion functions for facility location problems , 2007 .

[36]  Fernando Alonso,et al.  Intensity-modulated radiotherapy – a large scale multi-criteria programming problem , 2003, OR Spectr..

[37]  P. Pardalos,et al.  Handbook of global optimization , 1995 .

[38]  Matthias Ehrgott,et al.  Saddle Points and Pareto Points in Multiple Objective Programming , 2005, J. Glob. Optim..

[39]  Blas Pelegrín,et al.  Solving a Huff-like competitive location and design model for profit maximization in the plane , 2007, Eur. J. Oper. Res..

[40]  Matthias Ehrgott,et al.  Multicriteria Optimization (2. ed.) , 2005 .

[41]  Marc J. Schniederjans,et al.  A multi-criteria modeling approach to jury selection , 2005 .

[42]  Frank Plastria,et al.  Static competitive facility location: An overview of optimisation approaches , 2001, Eur. J. Oper. Res..

[43]  Ralph E. Steuer,et al.  A multi-period, multiple criteria optimization system for manpower planning☆ , 1988 .

[44]  Justo Puerto,et al.  MCDM Location Problems , 2005 .

[45]  Ulrich W. Kulisch,et al.  C++ Toolbox for Verified Scientific Computing I: Basic Numerical Problems , 1997 .

[46]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[47]  Ulrich W. Kulisch,et al.  C++ Toolbox for Verified Computing I: Basic Numerical Problems Theory, Algorithms, and Programs , 1997 .

[48]  Per Joakim Agrell,et al.  An interactive multicriteria decision model for multipurpose reservoir management: the Shellmouth Reservoir , 1998 .

[49]  Blas Pelegrín,et al.  Reconciling Franchisor and Franchisee: A Planar Biobjective Competitive Location and Design Model , 2006 .

[50]  Jacques-François Thisse,et al.  Economics of location: A selective survey , 1999, Comput. Oper. Res..