Space telescope sensitivity and controls for exoplanet imaging

We address design considerations and outline requirements for space telescopes with capabilities for high contrast imaging of exoplanets. The approach taken is to identify the span of potentially detectable Earth-sized terrestrial planets in the habitable zone of the nearest stars within 30 parsecs and estimate their inner working angles, flux ratios, SNR, sensitivities, wavefront error requirements, and sensing and control times parametrically versus aperture size. We consider 1, 2, 4, 8, and 16-m diameter telescope apertures. The achievable science, range of telescope architectures, and the coronagraphic approach are all active areas of research and are all subject to change in a rapidly evolving field. Thus presented is a snapshot of our current understanding with the goal of limiting the choices to those that appear currently technically feasible. We describe the top-level metrics of inner working angle, contrast and photometric throughput and explore how they are related to the range of target stars. A critical point is that for each telescope architecture and coronagraphic choice, the telescope stability requirements have differing impacts on the design for open- versus closed-loop sensing and control.

[1]  R. Sillitto The Quantum Theory of Light , 1974 .

[2]  J. E. Harvey,et al.  Transfer function characterization of grazing incidence optical systems. , 1988, Applied optics.

[3]  A. N. Argue,et al.  Properties of the HIPPARCOS Input Catalogue , 1995 .

[4]  Peter Z. Takacs,et al.  Light scattering from non-Gaussian surfaces , 1995, Optics & Photonics.

[5]  J. Schneider,et al.  The extrasolar planets encyclopedia , 1996 .

[6]  David Charbonneau,et al.  An Upper Limit on the Reflected Light from the Planet Orbiting the Star τ Bootis , 1999, astro-ph/9907195.

[7]  A. Labeyrie,et al.  The Four-Quadrant Phase-Mask Coronagraph. I. Principle , 2000 .

[8]  T P Murphy,et al.  Sparse matrix approximation method for an active optical control system. , 2001, Applied optics.

[9]  W. Traub,et al.  A Coronagraph with a Band-limited Mask for Finding Terrestrial Planets , 2002, astro-ph/0203455.

[10]  Bruce A. Macintosh,et al.  Speckle Decorrelation and Dynamic Range in Speckle Noise-limited Imaging , 2002 .

[11]  Russell B. Makidon,et al.  The Structure of High Strehl Ratio Point-Spread Functions , 2003 .

[12]  O. Guyon Phase-induced amplitude apodization of telescope pupils for extrasolar terrestrial planet imaging , 2003, astro-ph/0301190.

[13]  John E. Krist,et al.  Advanced Camera for Surveys coronagraph on the Hubble Space Telescope , 2003, SPIE Astronomical Telescopes + Instrumentation.

[14]  Scot S. Olivier,et al.  Extrasolar Planetary Imaging Coronagraph (EPIC) , 2004, SPIE Astronomical Telescopes + Instrumentation.

[15]  Robert A. Brown Single-Visit Photometric and Obscurational Completeness , 2005, astro-ph/0503077.

[16]  Gopal Vasudevan,et al.  Visible Nulling Coronagraphy for Exo-Planetary Detection and Characterization , 2005, Proceedings of the International Astronomical Union.

[17]  Mark S. Marley,et al.  Planetary Radii across Five Orders of Magnitude in Mass and Stellar Insolation: Application to Transits , 2006 .

[18]  N. Jeremy Kasdin,et al.  Linear and bayesian planet detection algorithms for the Terrestrial planet finder , 2006 .

[19]  Joseph J. Green,et al.  The Terrestrial Planet Finder Coronagraph optical surface requirements , 2006, SPIE Astronomical Telescopes + Instrumentation.

[20]  W. Cash Detection of Earth-like planets around nearby stars using a petal-shaped occulter , 2006, Nature.

[21]  N. Jeremy Kasdin,et al.  Externally occulted terrestrial planet finder coronagraph: simulations and sensitivities , 2007, SPIE Optical Engineering + Applications.

[22]  W. Traub,et al.  A laboratory demonstration of the capability to image an Earth-like extrasolar planet , 2007, Nature.

[23]  R. Vanderbei,et al.  Optimal Occulter Design for Finding Extrasolar Planets , 2007, 0704.3488.

[24]  Mark Clampin The Extrasolar Planetary Imaging Coronagraph , 2007 .

[25]  C. Aime,et al.  Speckle Noise and Dynamic Range in Coronagraphic Images , 2007, 0706.1739.

[26]  Mark Clampin,et al.  Optical Images of an Exosolar Planet 25 Light-Years from Earth , 2008, Science.

[27]  Amir Give'on,et al.  The Electric Field Conjugation - A unified formalism for wavefront correction algorithms , 2009 .

[28]  James E. Harvey,et al.  Calculating BRDFs from surface PSDs for moderately rough optical surfaces , 2009, Optical Engineering + Applications.

[29]  Marc J. Kuchner,et al.  A NEW ALGORITHM FOR SELF-CONSISTENT THREE-DIMENSIONAL MODELING OF COLLISIONS IN DUSTY DEBRIS DISKS , 2009, 0909.2227.

[30]  David M. Shemo,et al.  THE VECTOR VORTEX CORONAGRAPH: LABORATORY RESULTS AND FIRST LIGHT AT PALOMAR OBSERVATORY , 2009, 0912.2287.

[31]  Remi Soummer,et al.  NEW COMPLETENESS METHODS FOR ESTIMATING EXOPLANET DISCOVERIES BY DIRECT DETECTION , 2010 .

[32]  Gopal Vasudevan,et al.  Optical design of dilute aperture visible nulling coronagraph imaging (DAViNCI) , 2010, Astronomical Telescopes + Instrumentation.

[33]  P. Bely The Design and Construction of Large Optical Telescopes , 2010 .

[34]  Richard G. Lyon,et al.  Feasibility of exoplanet coronagraphy with the Hubble Space Telescope , 2010, Astronomical Telescopes + Instrumentation.

[35]  D. Mawet,et al.  An image of an exoplanet separated by two diffraction beamwidths from a star , 2010, Nature.

[36]  Mark Clampin,et al.  Vacuum nuller testbed (VNT) performance, characterization and null control: progress report , 2011, Optical Engineering + Applications.

[37]  A. Labeyrie,et al.  The Four‐Quadrant Phase‐Mask Coronagraph. I. Principle , 2000 .