Structural stability of the SARS-CoV-2 main protease: Can metal ions affect function?

[1]  J. J. Kozak,et al.  Funneled angle landscapes for helical proteins. , 2020, Journal of inorganic biochemistry.

[2]  Hualiang Jiang,et al.  Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors , 2020, Nature.

[3]  Serdar Durdagi Busecan Aksoydan Berna Dogan Kader Sahin A Shahraki Screening of Clinically Approved and Investigation Drugs as Potential Inhibitors of COVID-19 Main Protease: A Virtual Drug Repurposing Study , 2020 .

[4]  R. Hilgenfeld,et al.  Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors , 2020, Science.

[5]  Kaori Fukuzawa,et al.  Fragment Molecular Orbital Based Interaction Analyses on COVID-19 Main Protease − Inhibitor N3 Complex (PDB ID: 6LU7) , 2020, J. Chem. Inf. Model..

[6]  Stephen A. Wells,et al.  Rigidity, normal modes and flexible motion of a SARS-CoV-2 (COVID-19) protease structure , 2020, bioRxiv.

[7]  I. Sokolov,et al.  Rigidity , 2020, Geometric Regular Polytopes.

[8]  J. J. Kozak,et al.  Stereochemistry of residues in turning regions of helical proteins , 2019, JBIC Journal of Biological Inorganic Chemistry.

[9]  J. J. Kozak,et al.  Geometrical Description of Protein Structural Motifs. , 2018, The journal of physical chemistry. B.

[10]  Heiko Lammert,et al.  The role of atomic level steric effects and attractive forces in protein folding , 2012, Proteins.

[11]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[12]  M. Simon,et al.  Selective Inhibition of Human α-Thrombin by Cobalt(III) Schiff Base Complexes , 1998 .

[13]  H. Gray,et al.  Isolation of a myoglobin molten globule by selective cobalt(III)-induced unfolding. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[14]  H. Gray,et al.  Spectroscopy and Electrochemistry of Cobalt(III) Schiff Base Complexes , 1997 .

[15]  M. Sanner,et al.  Reduced surface: an efficient way to compute molecular surfaces. , 1996, Biopolymers.

[16]  H. C. Andersen,et al.  Role of Repulsive Forces in Determining the Equilibrium Structure of Simple Liquids , 1971 .

[17]  John J. Kozak,et al.  Solute‐Solute Interactions in Aqueous Solutions , 1968 .

[18]  W. Kauzmann,et al.  The Kinetics of Protein Denaturation. II. The Optical Rotation of Ovalbumin in Solutions of Guanidinium Salts , 1953 .

[19]  M. T. Watson,et al.  The Kinetics of Protein Denaturation. V. The Viscosity of Urea Solutions of Serum Albumin1 , 1953 .

[20]  W. Kauzmann,et al.  The Kinetics of Protein Denaturation. III. The Optical Rotations of Serum Albumin, β-Lactoglobulin and Pepsin in Urea Solutions , 1953 .

[21]  W. Kauzmann,et al.  The Kinetics of Protein Denaturation. I. The Behavior of the Optical Rotation of Ovalbumin in Urea Solutions1 , 1953 .

[22]  M. T. Watson,et al.  The Kinetics of Protein Denaturation. IV. The Viscosity and Gelation of Urea Solutions of Ovalbumin1 , 1953 .

[23]  E. A. Guggenheim,et al.  Statistical mechanics of regular mixtures , 1951, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[24]  W. G. McMillan,et al.  The Statistical Thermodynamics of Multicomponent Systems , 1945 .

[25]  M. Huggins Solutions of Long Chain Compounds , 1941 .

[26]  W. Kauzmann Some factors in the interpretation of protein denaturation. , 1959, Advances in protein chemistry.

[27]  P. Flory Principles of polymer chemistry , 1953 .