Artifact-Based Rendering: Harnessing Natural and Traditional Visual Media for More Expressive and Engaging 3D Visualizations

We introduce Artifact-Based Rendering (ABR), a framework of tools, algorithms, and processes that makes it possible to produce real, data-driven 3D scientific visualizations with a visual language derived entirely from colors, lines, textures, and forms created using traditional physical media or found in nature. A theory and process for ABR is presented to address three current needs: (i) designing better visualizations by making it possible for non-programmers to rapidly design and critique many alternative data-to-visual mappings; (ii) expanding the visual vocabulary used in scientific visualizations to depict increasingly complex multivariate data; (iii) bringing a more engaging, natural, and human-relatable handcrafted aesthetic to data visualization. New tools and algorithms to support ABR include front-end applets for constructing artifact-based colormaps, optimizing 3D scanned meshes for use in data visualization, and synthesizing textures from artifacts. These are complemented by an interactive rendering engine with custom algorithms and interfaces that demonstrate multiple new visual styles for depicting point, line, surface, and volume data. A within-the-research-team design study provides early evidence of the shift in visualization design processes that ABR is believed to enable when compared to traditional scientific visualization systems. Qualitative user feedback on applications to climate science and brain imaging support the utility of ABR for scientific discovery and public communication.

[1]  James Ze Wang,et al.  On shape and the computability of emotions , 2012, ACM Multimedia.

[2]  James T. Enns,et al.  Perception and Painting: A Search for Effective, Engaging Visualizations , 2002, IEEE Computer Graphics and Applications.

[3]  Donald M. Anderson,et al.  Elements of Design , 1961 .

[4]  Christopher G. Healey,et al.  Formalizing Artistic Techniques and Scientific Visualization for Painted Renditions of Complex Information Spaces , 2001, IJCAI.

[5]  William Knight,et al.  Using visual texture for information display , 1995, TOGS.

[6]  David Feng,et al.  Evaluation of glyph-based multivariate scalar volume visualization techniques , 2009, APGV '09.

[7]  Bernice E. Rogowitz,et al.  The "Which Blair project": a quick visual method for evaluating perceptual color maps , 2001, Proceedings Visualization, 2001. VIS '01..

[8]  David Sweeney,et al.  Data-in-Place: Thinking through the Relations Between Data and Community , 2015, CHI.

[9]  Ali Mahdavi-Amiri,et al.  Physical Visualization of Geospatial Datasets , 2017, IEEE Computer Graphics and Applications.

[10]  Essa Yacoub,et al.  Brain Tissue Micro-Structure Imaging from Diffusion MRI Using Least Squares Variable Separation , 2016 .

[11]  Colin Ware,et al.  Information Visualization: Perception for Design , 2000 .

[12]  William Wright,et al.  Visual Thinking Design Patterns , 2013, DMS.

[13]  Daniel Acevedo Feliz,et al.  Scientific Sketching for Collaborative VR Visualization Design , 2008, IEEE Transactions on Visualization and Computer Graphics.

[14]  Ben Shneiderman,et al.  Creativity support tools: accelerating discovery and innovation , 2007, CACM.

[15]  D. Bloomberg,et al.  Color quantization using octrees , 2003 .

[16]  Adam Finkelstein,et al.  WYSIWYG NPR: drawing strokes directly on 3D models , 2002, SIGGRAPH.

[17]  Paul S. Heckbert Color image quantization for frame buffer display , 1982, SIGGRAPH.

[18]  Robert Michael Kirby,et al.  Visualizing multivalued data from 2D incompressible flows using concepts from painting , 1999, VIS '99.

[19]  Bongshin Lee,et al.  SketchStory: Telling More Engaging Stories with Data through Freeform Sketching , 2013, IEEE Transactions on Visualization and Computer Graphics.

[20]  Policy,et al.  The Integration of the Humanities and Arts with Sciences, Engineering, and Medicine in Higher Education , 2018 .

[21]  W. Marsden I and J , 2012 .

[22]  James T. Enns,et al.  Engaging viewers through nonphotorealistic visualizations , 2007, NPAR '07.

[23]  Donna J. Cox,et al.  Using the Supercomputer to Visualize Higher Dimensions: An Artist's Contribution to Scientific Visualization , 2008, Leonardo.

[24]  Daniel Weiskopf,et al.  Texture-based visualization of uncertainty in flow fields , 2005, VIS 05. IEEE Visualization, 2005..

[25]  Donna J. Cox,et al.  Rendering the first star in the Universe - A case study , 2002, IEEE Visualization, 2002. VIS 2002..

[26]  Larissa Hjorth,et al.  Understanding physical activity through 3D printed material artifacts , 2014, CHI.

[27]  David H. Laidlaw,et al.  Painting and Visualization , 2005, The Visualization Handbook.

[28]  Theresa-Marie Rhyne Applying Color Theory to Digital Media and Visualization , 2017, CHI Extended Abstracts.

[29]  Scott Elliott,et al.  Influence of explicit Phaeocystis parameterizations on the global distribution of marine dimethyl sulfide , 2015 .

[30]  Elaine Cohen,et al.  A non-photorealistic lighting model for automatic technical illustration , 1998, SIGGRAPH.

[31]  James T. Enns,et al.  Large Datasets at a Glance: Combining Textures and Colors in Scientific Visualization , 1999, IEEE Trans. Vis. Comput. Graph..

[32]  Todd D. Ringler,et al.  Evaluation of the arbitrary Lagrangian–Eulerian vertical coordinate method in the MPAS-Ocean model , 2015 .

[33]  T. Georgiou,et al.  Microstructure Imaging of Crossing (MIX) White Matter Fibers from diffusion MRI , 2016, Scientific Reports.

[34]  Francesca Samsel,et al.  Art - Science - Visualization Collaborations: Examining the Spectrum , 2013 .

[35]  S. Chib,et al.  Understanding the Metropolis-Hastings Algorithm , 1995 .

[36]  Kenneth Moreland,et al.  Diverging Color Maps for Scientific Visualization , 2009, ISVC.

[37]  Marika M. Holland,et al.  Impact of sea ice on the marine iron cycle and phytoplankton productivity , 2014 .

[38]  Timo Ropinski,et al.  Survey of glyph-based visualization techniques for spatial multivariate medical data , 2011, Comput. Graph..

[39]  S. Doney,et al.  An intermediate complexity marine ecosystem model for the global domain , 2001 .

[40]  Xiaoru Yuan,et al.  WYSIWYG (What You See is What You Get) Volume Visualization , 2011, IEEE Transactions on Visualization and Computer Graphics.

[41]  J. Albers,et al.  Interaction of Color , 1971 .

[42]  Scott C. Doney,et al.  Marine Ecosystem Dynamics and Biogeochemical Cycling in the Community Earth System Model [CESM1(BGC)]: Comparison of the 1990s with the 2090s under the RCP4.5 and RCP8.5 Scenarios , 2013 .

[43]  David H. Laidlaw,et al.  Visualizing diffusion tensor images of the mouse spinal cord , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).

[44]  Penny Rheingans Task-based color scale design , 2000, Applied Imaging Pattern Recognition.

[45]  Bill Buxton,et al.  Sketching User Experiences: Getting the Design Right and the Right Design , 2007 .

[46]  Gordon Kindlmann,et al.  Superquadric tensor glyphs , 2004, VISSYM'04.

[47]  Roberta L. Klatzky,et al.  Please Touch: Object Properties that Invite Touch , 2012, IEEE Transactions on Haptics.

[48]  Andrew Gardner,et al.  Linear light source reflectometry , 2003, ACM Trans. Graph..

[49]  Kwan-Liu Ma,et al.  Meet the Scientists , 2007 .

[50]  Ronald D. Watts The Elements of Design , 1966 .

[51]  Santiago V. Lombeyda Distinct 3D Glyphs with Data Layering for Highly Dense Multivariate Data Plots , 2016, ArXiv.

[52]  David Salesin,et al.  Computer-generated pen-and-ink illustration , 1994, SIGGRAPH.

[53]  Victoria Interrante,et al.  Harnessing natural textures for multivariate visualization , 2000, IEEE Computer Graphics and Applications.

[54]  James P. Ahrens,et al.  Colormaps that Improve Perception of High-Resolution Ocean Data , 2015, CHI Extended Abstracts.

[55]  Daniel F. Keefe,et al.  Visualization-by-Sketching: An Artist's Interface for Creating Multivariate Time-Varying Data Visualizations , 2016, IEEE Transactions on Visualization and Computer Graphics.

[56]  David H. Rogers,et al.  Visualization and Analysis of Threats from Asteroid Ocean Impacts , 2016 .

[57]  Min Chen,et al.  Glyph Visualization: A Fail-Safe Design Scheme Based on Quasi-Hamming Distances , 2017, IEEE Computer Graphics and Applications.

[58]  Todd D. Ringler,et al.  Diagnosing Isopycnal Diffusivity in an Eddying, Idealized Midlatitude Ocean Basin via Lagrangian, in Situ, Global, High-Performance Particle Tracking (LIGHT) , 2015 .

[59]  Stefan Bruckner,et al.  TECHNICAL REPORT VolumeShop: An Interactive System for Direct Volume , 2022 .

[60]  Chris Stolte,et al.  Rendering effective route maps: improving usability through generalization , 2001, SIGGRAPH.

[61]  Daniel F. Keefe,et al.  Drawing with the Flow: A Sketch-Based Interface for Illustrative Visualization of 2D Vector Fields , 2010, SBIM.

[62]  Philip W. Jones,et al.  A multi-resolution approach to global ocean modeling , 2013 .

[63]  Victor Bucha,et al.  3DCapture: 3D Reconstruction for a Smartphone , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[64]  James P. Ahrens,et al.  The Good, the Bad, and the Ugly: A Theoretical Framework for the Assessment of Continuous Colormaps , 2018, IEEE Transactions on Visualization and Computer Graphics.

[65]  Pierre Dragicevic,et al.  Opportunities and Challenges for Data Physicalization , 2015, CHI.

[66]  Charles D. Hansen,et al.  A Survey of Colormaps in Visualization , 2016, IEEE Transactions on Visualization and Computer Graphics.

[67]  Daniel Acevedo Feliz,et al.  Design-by-example: a schema for designing visualizations using examples from art , 2003, SIGGRAPH '03.

[68]  Eva Hornecker,et al.  Towards a Design Space for Multisensory Data Representation , 2016, Interact. Comput..

[69]  Kasper Hornbæk,et al.  Exploring the Challenges of Making Data Physical , 2015, CHI Extended Abstracts.

[70]  J. Itten,et al.  The elements of color : a treatise on the color system , 1970 .

[71]  David H. Laidlaw,et al.  Artistic Collaboration in Designing VR Visualizations , 2005, IEEE Computer Graphics and Applications.

[72]  Anastasia Bezerianos,et al.  A Systematic Review of Experimental Studies on Data Glyphs , 2017, IEEE Transactions on Visualization and Computer Graphics.

[73]  Richard Szeliski,et al.  Video textures , 2000, SIGGRAPH.

[74]  Tamara Munzner,et al.  Visualization Analysis and Design , 2014, A.K. Peters visualization series.

[75]  Guillermo Sapiro,et al.  Texture Synthesis for 3D Shape Representation , 2003, IEEE Trans. Vis. Comput. Graph..

[76]  Peter Kovesi,et al.  Good Colour Maps: How to Design Them , 2015, ArXiv.

[77]  J.,et al.  Marine EcosystemDynamics and Biogeochemical Cycling in the Community Earth System Model [ CESM 1 ( BGC ) ] : Comparison of the 1990 s with the 2090 s under the RCP 4 . 5 and RCP 8 . 5 Scenarios , 2013 .

[78]  Matthew O. Ward,et al.  A Taxonomy of Glyph Placement Strategies for Multidimensional Data Visualization , 2002, Inf. Vis..