Chaos and complexity by design

A bstractWe study the relationship between quantum chaos and pseudorandomness by developing probes of unitary design. A natural probe of randomness is the “frame poten-tial,” which is minimized by unitary k-designs and measures the 2-norm distance between the Haar random unitary ensemble and another ensemble. A natural probe of quantum chaos is out-of-time-order (OTO) four-point correlation functions. We show that the norm squared of a generalization of out-of-time-order 2k-point correlators is proportional to the kth frame potential, providing a quantitative connection between chaos and pseudorandomness. Additionally, we prove that these 2k-point correlators for Pauli operators completely determine the k-fold channel of an ensemble of unitary operators. Finally, we use a counting argument to obtain a lower bound on the quantum circuit complexity in terms of the frame potential. This provides a direct link between chaos, complexity, and randomness.

[1]  J. Kaplan,et al.  A quantum correction to chaos , 2016, 1601.06164.

[2]  Xi Dong,et al.  Bulk locality and quantum error correction in AdS/CFT , 2014, 1411.7041.

[3]  Mike Blake Universal Charge Diffusion and the Butterfly Effect , 2016 .

[4]  Tokiro Numasawa,et al.  Scrambling without chaos in RCFT , 2016, 1602.06542.

[5]  Daniel A. Roberts,et al.  Holographic Complexity Equals Bulk Action? , 2016, Physical review letters.

[6]  Yichen Huang,et al.  Out‐of‐time‐ordered correlators in many‐body localized systems , 2016, 1608.01091.

[7]  D. Stanford Many-body chaos at weak coupling , 2015, 1512.07687.

[8]  X. Qi,et al.  Fractional statistics and the butterfly effect , 2016, 1602.06543.

[9]  H. S. Bansil,et al.  A search for prompt lepton-jets in pp collisions at s=8$$ \sqrt{\mathrm{s}}=8 $$ TeV with the ATLAS detector , 2016 .

[10]  A. Harrow,et al.  Random Quantum Circuits are Approximate 2-designs , 2008, 0802.1919.

[11]  Andris Ambainis,et al.  Quantum t-designs: t-wise Independence in the Quantum World , 2007, Twenty-Second Annual IEEE Conference on Computational Complexity (CCC'07).

[12]  E. Knill,et al.  Randomized Benchmarking of Quantum Gates , 2007, 0707.0963.

[13]  J. Maldacena,et al.  Remarks on the Sachdev-Ye-Kitaev model , 2016, 1604.07818.

[14]  J. Preskill,et al.  Holographic quantum error-correcting codes: toy models for the bulk/boundary correspondence , 2015, 1503.06237.

[15]  Daniel A. Roberts,et al.  Chaos in quantum channels , 2015, 1511.04021.

[16]  Eric Perlmutter Bounding the space of holographic CFTs with chaos , 2016, 1602.08272.

[17]  M. Laine,et al.  Heavy Quark Thermalization in Classical Lattice Gauge Theory , 2009, 0902.2856.

[18]  Hui Zhai,et al.  Out-of-time-order correlation for many-body localization. , 2016, Science bulletin.

[19]  S. Shenker,et al.  Multiple shocks , 2013, 1312.3296.

[20]  L. Susskind Computational complexity and black hole horizons , 2014, 1402.5674.

[21]  R. Myers,et al.  On spacetime entanglement , 2013, 1304.2030.

[22]  Nicole Yunger Halpern Jarzynski-like equality for the out-of-time-ordered correlator , 2016, 1609.00015.

[23]  Leonard Susskind,et al.  Disturbing Implications of a Cosmological Constant , 2002 .

[24]  Daniel A. Roberts,et al.  Localized shocks , 2014, 1409.8180.

[25]  Michal Horodecki,et al.  Local random quantum circuits are approximate polynomial-designs: numerical results , 2012 .

[26]  Zak Webb,et al.  The Clifford group forms a unitary 3-design , 2015, Quantum Inf. Comput..

[27]  Christoph Dankert,et al.  Exact and approximate unitary 2-designs and their application to fidelity estimation , 2009 .

[28]  Daniel A. Roberts,et al.  Complexity Equals Action , 2015, 1509.07876.

[29]  P. Hayden,et al.  Holographic duality from random tensor networks , 2016, 1601.01694.

[30]  J. Polchinski,et al.  Black holes: complementarity or firewalls? , 2012, Journal of High Energy Physics.

[31]  P. Hayden,et al.  Towards the fast scrambling conjecture , 2011, Journal of High Energy Physics.

[32]  A. Larkin,et al.  Quasiclassical Method in the Theory of Superconductivity , 1969 .

[33]  E. Rabinovici,et al.  Geometry and quantum noise , 2014, 1404.7085.

[34]  Jeongwan Haah,et al.  Quantum Entanglement Growth Under Random Unitary Dynamics , 2016, 1608.06950.

[35]  Huangjun Zhu Multiqubit Clifford groups are unitary 3-designs , 2015, 1510.02619.

[36]  B. Swingle,et al.  Slow scrambling in disordered quantum systems , 2016, 1608.03280.

[37]  J. Maldacena,et al.  A bound on chaos , 2015, Journal of High Energy Physics.

[38]  P. Hayden,et al.  Black holes as mirrors: Quantum information in random subsystems , 2007, 0708.4025.

[39]  Brian Swingle,et al.  Constructing holographic spacetimes using entanglement renormalization , 2012, 1209.3304.

[40]  Riccardo D'Auria,et al.  KK Spectroscopy of Type IIB Supergravity on $AdS_{5} \times T^{11}$ , 1999 .

[41]  Seth Lloyd,et al.  Pseudo-Random Unitary Operators for Quantum Information Processing , 2003, Science.

[42]  Ye,et al.  Gapless spin-fluid ground state in a random quantum Heisenberg magnet. , 1992, Physical review letters.

[43]  Seth Lloyd,et al.  Convergence conditions for random quantum circuits , 2005, quant-ph/0503210.

[44]  Yinzheng Gu Moments of Random Matrices and Weingarten Functions , 2013 .

[45]  S. Shenker,et al.  Stringy effects in scrambling , 2014, 1412.6087.

[46]  E. Knill Approximation by Quantum Circuits , 1995 .

[47]  John Watrous,et al.  The Theory of Quantum Information , 2018 .

[48]  Daniel A. Roberts,et al.  Complexity, action, and black holes , 2015, 1512.04993.

[49]  L. Susskind,et al.  Complexity and Shock Wave Geometries , 2014, 1406.2678.

[50]  E. Mucciolo,et al.  Emergent irreversibility and entanglement spectrum statistics. , 2013, Physical review letters.

[51]  T. Osborne,et al.  Holographic fluctuations and the principle of minimal complexity , 2016, 1605.07768.

[52]  Page,et al.  Average entropy of a subsystem. , 1993, Physical review letters.

[53]  Ion Nechita,et al.  Random matrix techniques in quantum information theory , 2015, 1509.04689.

[54]  J. Polchinski,et al.  An apologia for firewalls , 2013, Journal of High Energy Physics.

[55]  L. Susskind,et al.  Switchbacks and the Bridge to Nowhere , 2014, 1408.2823.

[56]  Debbie W. Leung,et al.  Quantum data hiding , 2002, IEEE Trans. Inf. Theory.

[57]  Aidan Roy,et al.  Unitary designs and codes , 2008, Des. Codes Cryptogr..

[58]  Daniel A. Roberts,et al.  Two-dimensional conformal field theory and the butterfly effect , 2014, 1412.5123.

[59]  J. Maldacena,et al.  Time evolution of entanglement entropy from black hole interiors , 2013, 1303.1080.

[60]  Adam R. Brown,et al.  Quantum complexity and negative curvature , 2016, 1608.02612.

[61]  Michael A. Nielsen,et al.  The geometry of quantum computation , 2008, Quantum Inf. Comput..

[62]  L. Susskind Addendum to computational complexity and black hole horizons , 2014, 1403.5695.

[63]  P. Hayden,et al.  Quantum computation vs. firewalls , 2013, 1301.4504.

[64]  P. Hayden,et al.  Measuring the scrambling of quantum information , 2016, 1602.06271.

[65]  Mike Blake,et al.  Universal Charge Diffusion and the Butterfly Effect in Holographic Theories. , 2016, Physical review letters.

[66]  Leonard Susskind,et al.  The typical‐state paradox: diagnosing horizons with complexity , 2015, 1507.02287.

[67]  B. Swingle,et al.  Entanglement Renormalization and Holography , 2009, 0905.1317.

[68]  Tokiro Numasawa,et al.  Out-of-time-ordered correlators and purity in rational conformal field theories , 2016 .

[69]  R. Renner,et al.  One-Shot Decoupling , 2010, 1012.6044.

[70]  Mike Blake Universal diffusion in incoherent black holes , 2016, 1604.01754.

[71]  Daniel A. Roberts,et al.  Lieb-Robinson Bound and the Butterfly Effect in Quantum Field Theories. , 2016, Physical review letters.

[72]  Richard Andrew Low,et al.  Pseudo-randonmess and Learning in Quantum Computation , 2010, 1006.5227.

[73]  R. Myers,et al.  Complexity of formation in holography , 2016, 1610.08063.

[74]  Daniel A. Roberts,et al.  Diagnosing Chaos Using Four-Point Functions in Two-Dimensional Conformal Field Theory. , 2015, Physical review letters.

[75]  Adam R. Brown,et al.  Second law of quantum complexity , 2017, 1701.01107.

[76]  F. Brandão,et al.  Local random quantum circuits are approximate polynomial-designs: numerical results , 2012, 1208.0692.

[77]  E. Rabinovici,et al.  Very Long Time Scales and Black Hole Thermal Equilibrium , 2003, hep-th/0308063.

[78]  Daniel A. Roberts,et al.  Lieb-Robinson Bound and the Butterfly Effect in Quantum Field Theories. , 2016, Physical review letters.

[79]  Christoph Hirche,et al.  Efficient quantum pseudorandomness with nearly time-independent hamiltonian dynamics , 2016, 1609.07021.

[80]  Omar Fawzi,et al.  Decoupling with Random Quantum Circuits , 2013, Communications in Mathematical Physics.

[81]  Benoit Collins,et al.  Moments and cumulants of polynomial random variables on unitarygroups, the Itzykson-Zuber integral, and free probability , 2002 .

[82]  Richard Kueng,et al.  Qubit stabilizer states are complex projective 3-designs , 2015, ArXiv.

[83]  L. Viola,et al.  Convergence rates for arbitrary statistical moments of random quantum circuits. , 2009, Physical review letters.

[84]  D. Gross,et al.  Evenly distributed unitaries: On the structure of unitary designs , 2006, quant-ph/0611002.

[85]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[86]  A. J. Scott Optimizing quantum process tomography with unitary 2-designs , 2007, 0711.1017.

[87]  S. Shenker,et al.  Black holes and the butterfly effect , 2013, Journal of High Energy Physics.