An AIS-ACO Hybrid Approach for Multi-Objective Distribution System Reconfiguration

This paper proposes a hybrid algorithm based on artificial immune systems and ant colony optimization for distribution system reconfiguration, which is formulated as a multi-objective optimization problem. The algorithm maintains a population of candidate solutions called antibodies. The search space is explored by means of the hypermutation operator that perturbs existing antibodies to produce new ones. A table of pheromones is used to reinforce better edges during hypermutation. An added innovation is the use of the pheromones to obtain quick solutions to restore the distribution system under contingency situations. The hybrid approach has been successfully implemented on two test networks. The results obtained demonstrate the efficacy of the algorithm.

[1]  C. Su,et al.  Variable scaling hybrid differential evolution for solving network reconfiguration of distribution systems , 2005 .

[2]  Felix F. Wu,et al.  Network reconfiguration in distribution systems for loss reduction and load balancing , 1989 .

[3]  K. Prasad,et al.  Optimal reconfiguration of radial distribution systems using a fuzzy mutated genetic algorithm , 2005, IEEE Transactions on Power Delivery.

[4]  Alain Hertz,et al.  Ants can colour graphs , 1997 .

[5]  Alan S. Perelson,et al.  Genetic Algorithms and the Immune System , 1990, PPSN.

[6]  Y.-Y. Hsu,et al.  Distribution system service restoration using a heuristic search approach , 1991 .

[7]  Hsiao-Dong Chiang,et al.  Optimal network reconfigurations in distribution systems. II. Solution algorithms and numerical results , 1990 .

[8]  Wen-Hui Chen,et al.  Distribution system restoration using the hybrid fuzzy-grey method , 2005 .

[9]  Alfred V. Aho,et al.  Data Structures and Algorithms , 1983 .

[10]  A. Assad,et al.  The quadratic minimum spanning tree problem , 1992 .

[11]  Carlos A. Coello Coello,et al.  Solving Multiobjective Optimization Problems Using an Artificial Immune System , 2005, Genetic Programming and Evolvable Machines.

[12]  I. Drezga,et al.  A heuristic nonlinear constructive method for distribution system reconfiguration , 1999 .

[13]  Angus R. Simpson,et al.  Parametric study for an ant algorithm applied to water distribution system optimization , 2005, IEEE Transactions on Evolutionary Computation.

[14]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[15]  M Dorigo,et al.  Ant colonies for the travelling salesman problem. , 1997, Bio Systems.

[16]  Y.-T. Hsiao,et al.  Multiobjective optimal feeder reconfiguration , 2001 .

[17]  D. Shirmohammadi,et al.  Reconfiguration of electric distribution networks for resistive line losses reduction , 1989 .

[18]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[19]  Luca Maria Gambardella,et al.  MACS-VRPTW: a multiple ant colony system for vehicle routing problems with time windows , 1999 .

[20]  S.S.H. Lee,et al.  Multi-objective feeder reconfiguration by distribution management system , 1995 .

[21]  Jae-Chul Kim,et al.  Network reconfiguration at the power distribution system with dispersed generations for loss reduction , 2000, 2000 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No.00CH37077).

[22]  David W. Corne,et al.  Properties of an adaptive archiving algorithm for storing nondominated vectors , 2003, IEEE Trans. Evol. Comput..

[23]  P. Hajela,et al.  Immune network simulations in multicriterion design , 1999 .

[24]  Jongsoo Lee,et al.  Constrained genetic search via schema adaptation: An immune network solution , 1996 .

[25]  S. K. Basu,et al.  A new algorithm for the reconfiguration of distribution feeders for loss minimization , 1992 .

[26]  J. Dennis,et al.  A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems , 1997 .

[27]  Fernando José Von Zuben,et al.  Learning and optimization using the clonal selection principle , 2002, IEEE Trans. Evol. Comput..

[28]  Bala Venkatesh,et al.  Load-flow algorithm of radial distribution networks incorporating composite load model , 2003 .

[29]  I. Mareels,et al.  An efficient brute-force solution to the network reconfiguration problem , 2000 .

[30]  Vittorio Maniezzo,et al.  The Ant System Applied to the Quadratic Assignment Problem , 1999, IEEE Trans. Knowl. Data Eng..

[31]  Eleonora Riva Sanseverino,et al.  Evolving non-dominated solutions in multiobjective service restoration for automated distribution networks , 2001 .

[32]  A. Pahwa,et al.  Using ant colony optimization for loss minimization in distribution networks , 2005, Proceedings of the 37th Annual North American Power Symposium, 2005..

[33]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[34]  Carlos A. Coello Coello,et al.  A Short Tutorial on Evolutionary Multiobjective Optimization , 2001, EMO.

[35]  John E. Hunt,et al.  An adaptive, distributed learning system based on the immune system , 1995, 1995 IEEE International Conference on Systems, Man and Cybernetics. Intelligent Systems for the 21st Century.

[36]  J. R. Shin,et al.  An efficient simulated annealing algorithm for network reconfiguration in large-scale distribution systems , 2002 .

[37]  J. J. Grainger,et al.  Distribution feeder reconfiguration for loss reduction , 1988 .

[38]  M. A. Matos,et al.  Multiobjective reconfiguration for loss reduction and service restoration using simulated annealing , 1999, PowerTech Budapest 99. Abstract Records. (Cat. No.99EX376).

[39]  Ying-Tung Hsiao,et al.  Multiobjective evolution programming method for feeder reconfiguration , 2004 .

[40]  Marco Dorigo,et al.  Ant system: optimization by a colony of cooperating agents , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[41]  D. Das A fuzzy multiobjective approach for network reconfiguration of distribution systems , 2006, IEEE Transactions on Power Delivery.

[42]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[43]  Carlos César Barioni de Oliveira,et al.  Fuzzy decision model for the reconfiguration of distribution networks using genetic algorithms , 1999 .

[44]  Ying Sun,et al.  Distribution network reconfiguration for load balancing using binary particle swarm optimization , 2004, 2004 International Conference on Power System Technology, 2004. PowerCon 2004..

[45]  Graham P. Cook,et al.  Immunobiology: The Immune System in Health and Disease (4th edn) by C.A. Janeway, P. Travers, M. Walport and J.D. Capra , 2000 .

[46]  A. G. Expósito,et al.  Path-based distribution network modeling: application to reconfiguration for loss reduction , 2005, IEEE Transactions on Power Systems.

[47]  Richard F. Hartl,et al.  Applying the ANT System to the Vehicle Routing Problem , 1999 .

[48]  H. P. Schmidt,et al.  Fast reconfiguration of distribution systems considering loss minimization , 2005, IEEE Transactions on Power Systems.

[49]  Alan S. Perelson,et al.  Population Diversity in an Immune System Model: Implications for Genetic Search , 1992, FOGA.

[50]  S. Carneiro,et al.  A new heuristic reconfiguration algorithm for large distribution systems , 2005, 2006 IEEE Power Engineering Society General Meeting.

[51]  K. Aoki,et al.  Normal State Optimal Load Allocation in Distribution Systems , 1987, IEEE Transactions on Power Delivery.

[52]  N. Bretas,et al.  Main chain representation for evolutionary algorithms applied to distribution system reconfiguration , 2005, IEEE Transactions on Power Systems.

[53]  C. J. Wu,et al.  Application of immune algorithm to optimal switching operation for distribution-loss minimisation and loading balance , 2003 .