Tuning interaction of surface-adsorbed species over Fe/K-Al2O3 modified with transition metals (Cu, Mn, V, Zn or Co) on light olefins production from CO2 hydrogenation

[1]  W. Ying,et al.  Role of nanosized sheet-like SAPO-34 in bifunctional catalyst for syngas-to-olefins reaction , 2020 .

[2]  G. Rupprechter,et al.  Tuning Interactions of Surface‐adsorbed Species over Fe−Co/K−Al2O3 Catalyst by Different K Contents: Selective CO2 Hydrogenation to Light Olefins , 2020 .

[3]  Shurong Wang,et al.  Selective Fischer-Tropsch synthesis for gasoline production over Y, Ce, or La-modified Co/H-β , 2020 .

[4]  Qianqian Chen,et al.  Techno-economic evaluation of CO2-rich natural gas dry reforming for linear alpha olefins production , 2020 .

[5]  Minhua Zhang,et al.  CO Dissociation Mechanism on Mn-Doped Fe(100) Surface: A Computational Investigation , 2019, Catalysis Letters.

[6]  W. Ying,et al.  Li-decorated Fe-Mn nanocatalyst for high-temperature Fischer–Tropsch synthesis of light olefins , 2019 .

[7]  A. Russell,et al.  CO2 hydrogenation to light olefins with high-performance Fe0.30Co0.15Zr0.45K0.10O1.63 , 2019, Journal of Catalysis.

[8]  G. Rupprechter,et al.  Pore size effects on physicochemical properties of Fe-Co/K-Al2O3 catalysts and their catalytic activity in CO2 hydrogenation to light olefins , 2019, Applied Surface Science.

[9]  J. Hazemann,et al.  Tandem Conversion of CO2 to Valuable Hydrocarbons in Highly Concentrated Potassium Iron Catalysts , 2019, ChemCatChem.

[10]  W. Zhou,et al.  New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels. , 2019, Chemical Society reviews.

[11]  W. Ying,et al.  Effect of Li promoter on FeMn/CNTs for light olefins from syngas , 2019, Catalysis Communications.

[12]  X. Lai,et al.  Hydrogenation of CO2 to light olefins on CuZnZr@(Zn-)SAPO-34 catalysts: Strategy for product distribution , 2019, Fuel.

[13]  Marc D. Porosoff,et al.  Development of Tandem Catalysts for CO2 Hydrogenation to Olefins , 2019, ACS Catalysis.

[14]  Thongthai Witoon,et al.  Optimization of synthesis condition for CO2 hydrogenation to light olefins over In2O3 admixed with SAPO-34 , 2019, Energy Conversion and Management.

[15]  E. Gerasimov,et al.  Reduction of double manganese-cobalt oxides: in situ XRD and TPR study. , 2018, Dalton transactions.

[16]  Gongying Wang,et al.  Preparation of polycarbonate diols (PCDLs) from dimethyl carbonate (DMC) and diols catalyzed by KNO3/γ-Al2O3 , 2018, RSC advances.

[17]  Xiaohao Liu,et al.  Hydrogenation of CO2 into hydrocarbons: Enhanced catalytic activity over Fe-based Fischer-Tropsch catalysts , 2018 .

[18]  Xiao Jiang,et al.  Selective CO2 Hydrogenation to Hydrocarbons on Cu-Promoted Fe-Based Catalysts: Dependence on Cu–Fe Interaction , 2018, ACS Sustainable Chemistry & Engineering.

[19]  Ke Gong,et al.  Shape-Selective Zeolites Promote Ethylene Formation from Syngas via a Ketene Intermediate. , 2018, Angewandte Chemie.

[20]  M. Rønning,et al.  The Effect of Copper Loading on Iron Carbide Formation and Surface Species in Iron‐Based Fischer–Tropsch Synthesis Catalysts , 2018 .

[21]  Xiao Jiang,et al.  Fe–Cu Bimetallic Catalysts for Selective CO2 Hydrogenation to Olefin-Rich C2+ Hydrocarbons , 2018 .

[22]  Yuhan Sun,et al.  Direct Production of Lower Olefins from CO2 Conversion via Bifunctional Catalysis , 2018 .

[23]  Yuan Lyu,et al.  Insight into the Formation of Co@Co2C Catalysts for Direct Synthesis of Higher Alcohols and Olefins from Syngas , 2018 .

[24]  J. Klemeš,et al.  Mechanisms and kinetics of CO2 hydrogenation to value-added products: A detailed review on current status and future trends , 2017 .

[25]  G. Bonura,et al.  Structure–activity relationships of Fe-Co/K-Al2O3 catalysts calcined at different temperatures for CO2 hydrogenation to light olefins , 2017 .

[26]  Xiaolian Liu,et al.  Direct and Highly Selective Conversion of Synthesis Gas into Lower Olefins: Design of a Bifunctional Catalyst Combining Methanol Synthesis and Carbon-Carbon Coupling. , 2016, Angewandte Chemie.

[27]  Rahimi M. Yusop,et al.  Studies on CO2 Adsorption and Desorption Properties from Various Types of Iron Oxides (FeO, Fe2O3, and Fe3O4) , 2016 .

[28]  Yong Yang,et al.  Study on reduction and carburization behaviors of iron phases for iron-based Fischer–Tropsch synthesis catalyst ☆ , 2015 .

[29]  Qingxiang Ma,et al.  Selective formation of light olefins from CO2 hydrogenation over Fe–Zn–K catalysts , 2015 .

[30]  J. Fierro,et al.  Effect of Mn loading onto MnFeO nanocomposites for the CO2 hydrogenation reaction , 2015 .

[31]  N. Koizumi,et al.  Comparative Study on CO2 Hydrogenation to Higher Hydrocarbons over Fe-Based Bimetallic Catalysts , 2014, Topics in Catalysis.

[32]  Yuhan Sun,et al.  CO Dissociation Mechanism on Cu-Doped Fe(100) Surfaces , 2013 .

[33]  K. P. Jong,et al.  Catalysts for Production of Lower Olefins from Synthesis Gas: A Review , 2013 .

[34]  Shengguang Wang,et al.  Chemical and structural effects of silica in iron-based Fischer-Tropsch synthesis catalysts , 2012 .

[35]  F. Williams,et al.  K and Mn doped iron-based CO2 hydrogenation catalysts: Detection of KAlH4 as part of the catalyst's active phase , 2010 .

[36]  Ki-Won Jun,et al.  Fischer–Tropsch Synthesis by Carbon Dioxide Hydrogenation on Fe-Based Catalysts , 2008 .

[37]  Luciaan Boels,et al.  The crucial role of the K+-aluminium oxide interaction in K+-promoted alumina- and hydrotalcite-based materials for CO2 sorption at high temperatures. , 2008, ChemSusChem.

[38]  N. Coville,et al.  Fe:Co/TiO2 bimetallic catalysts for the Fischer–Tropsch reaction: Part 3: The effect of Fe:Co ratio, mixing and loading on FT product selectivity , 2005 .

[39]  E. Iglesia,et al.  Effects of Zn, Cu, and K Promoters on the Structure and on the Reduction, Carburization, and Catalytic Behavior of Iron-Based Fischer–Tropsch Synthesis Catalysts , 2001 .

[40]  K. Jun,et al.  Catalytic conversion of carbon dioxide into hydrocarbons over zinc promoted iron catalysts , 1997 .

[41]  S. Nam,et al.  Catalytic reduction of carbon dioxide. The effects of catalysts and reductants , 1995 .

[42]  Snehal A. Patel,et al.  Promoter effects on precipitated iron catalysts for Fischer-Tropsch synthesis , 1990 .

[43]  Alexis T. Bell,et al.  Fischer-Tropsch synthesis over reduced and unreduced iron oxide catalysts , 1986 .