Atlas-Guided Cluster Analysis of Large Tractography Datasets

Diffusion Tensor Imaging (DTI) and fiber tractography are important tools to map the cerebral white matter microstructure in vivo and to model the underlying axonal pathways in the brain with three-dimensional fiber tracts. As the fast and consistent extraction of anatomically correct fiber bundles for multiple datasets is still challenging, we present a novel atlas-guided clustering framework for exploratory data analysis of large tractography datasets. The framework uses an hierarchical cluster analysis approach that exploits the inherent redundancy in large datasets to time-efficiently group fiber tracts. Structural information of a white matter atlas can be incorporated into the clustering to achieve an anatomically correct and reproducible grouping of fiber tracts. This approach facilitates not only the identification of the bundles corresponding to the classes of the atlas; it also enables the extraction of bundles that are not present in the atlas. The new technique was applied to cluster datasets of 46 healthy subjects. Prospects of automatic and anatomically correct as well as reproducible clustering are explored. Reconstructed clusters were well separated and showed good correspondence to anatomical bundles. Using the atlas-guided cluster approach, we observed consistent results across subjects with high reproducibility. In order to investigate the outlier elimination performance of the clustering algorithm, scenarios with varying amounts of noise were simulated and clustered with three different outlier elimination strategies. By exploiting the multithreading capabilities of modern multiprocessor systems in combination with novel algorithms, our toolkit clusters large datasets in a couple of minutes. Experiments were conducted to investigate the achievable speedup and to demonstrate the high performance of the clustering framework in a multiprocessing environment.

[1]  R. A. Fisher,et al.  Statistical Tables for Biological, Agricultural and Medical Research , 1956 .

[2]  J. Wishart Statistical tables , 2018, Global Education Monitoring Report.

[3]  J. H. Ward Hierarchical Grouping to Optimize an Objective Function , 1963 .

[4]  Algorithm 235: Random permutation , 1964, CACM.

[5]  Denis Le Bihan,et al.  Imagerie de diffusion in-vivo par résonance magnétique nucléaire , 1985 .

[6]  Sudipto Guha,et al.  CURE: an efficient clustering algorithm for large databases , 1998, SIGMOD '98.

[7]  Vipin Kumar,et al.  Chameleon: Hierarchical Clustering Using Dynamic Modeling , 1999, Computer.

[8]  P. V. van Zijl,et al.  Three‐dimensional tracking of axonal projections in the brain by magnetic resonance imaging , 1999, Annals of neurology.

[9]  M. Raichle,et al.  Tracking neuronal fiber pathways in the living human brain. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Karl J. Friston,et al.  Voxel-Based Morphometry—The Methods , 2000, NeuroImage.

[11]  P. Basser,et al.  In vivo fiber tractography using DT‐MRI data , 2000, Magnetic resonance in medicine.

[12]  Hans-Peter Kriegel,et al.  LOF: identifying density-based local outliers , 2000, SIGMOD '00.

[13]  Susumu Mori,et al.  Fiber tracking: principles and strategies – a technical review , 2002, NMR in biomedicine.

[14]  John H. Gilmore,et al.  Quantitative Analysis of White Matter Fiber Properties along Geodesic Paths , 2003, MICCAI.

[15]  A. Anderson,et al.  Classification and quantification of neuronal fiber pathways using diffusion tensor MRI , 2003, Magnetic resonance in medicine.

[16]  Guido Gerig,et al.  Towards a shape model of white matter fiber bundles using diffusion tensor MRI , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[17]  S. Wakana,et al.  Fiber tract-based atlas of human white matter anatomy. , 2004, Radiology.

[18]  Carl-Fredrik Westin,et al.  Clustering Fiber Traces Using Normalized Cuts , 2004, MICCAI.

[19]  D. Tuch Q‐ball imaging , 2004, Magnetic resonance in medicine.

[20]  Fei Wang,et al.  Asymmetry analysis of cingulum based on scale‐invariant parameterization by diffusion tensor imaging , 2005, Human brain mapping.

[21]  Hao Huang,et al.  DTI tractography based parcellation of white matter: Application to the mid-sagittal morphology of corpus callosum , 2005, NeuroImage.

[22]  Daniel C Alexander,et al.  Probabilistic anatomical connectivity derived from the microscopic persistent angular structure of cerebral tissue , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[23]  D. Drachman Do we have brain to spare? , 2005, Neurology.

[24]  Andrew L. Alexander,et al.  Bootstrap white matter tractography (BOOT-TRAC) , 2005, NeuroImage.

[25]  Pepe Siy,et al.  Robust shape similarity retrieval based on contour segmentation polygonal multiresolution and elastic matching , 2005, Pattern Recognit..

[26]  Anna Vilanova,et al.  Evaluation of fiber clustering methods for diffusion tensor imaging , 2005, VIS 05. IEEE Visualization, 2005..

[27]  Björn Karlsson,et al.  Beyond the C++ Standard Library: An Introduction to Boost , 2005 .

[28]  A. Connelly,et al.  Quantification of the shape of fiber tracts , 2006, Magnetic resonance in medicine.

[29]  C. Westin,et al.  A method for clustering white matter fiber tracts. , 2006, AJNR. American journal of neuroradiology.

[30]  Daniel Rueckert,et al.  Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data , 2006, NeuroImage.

[31]  E. Melhem,et al.  Diffusion-tensor MR imaging and tractography: exploring brain microstructure and connectivity. , 2007, Radiology.

[32]  Randy L. Gollub,et al.  Reproducibility of quantitative tractography methods applied to cerebral white matter , 2007, NeuroImage.

[33]  R. Deriche,et al.  Regularized, fast, and robust analytical Q‐ball imaging , 2007, Magnetic resonance in medicine.

[34]  Carl-Fredrik Westin,et al.  Comparison of fiber tracts derived from in-vivo DTI tractography with 3D histological neural tract tracer reconstruction on a macaque brain , 2007, NeuroImage.

[35]  Mark W. Woolrich,et al.  Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? , 2007, NeuroImage.

[36]  Carl-Fredrik Westin,et al.  Automatic Tractography Segmentation Using a High-Dimensional White Matter Atlas , 2007, IEEE Transactions on Medical Imaging.

[37]  Oliver Ganslandt,et al.  Diffusion tensor imaging and optimized fiber tracking in glioma patients: Histopathologic evaluation of tumor-invaded white matter structures , 2007, NeuroImage.

[38]  Carl-Fredrik Westin,et al.  Tract-Based Morphometry , 2007, MICCAI.

[39]  W. Eric L. Grimson,et al.  A unified framework for clustering and quantitative analysis of white matter fiber tracts , 2008, Medical Image Anal..

[40]  John D. Owens,et al.  GPU Computing , 2008, Proceedings of the IEEE.

[41]  David H. Laidlaw,et al.  Identifying White-Matter Fiber Bundles in DTI Data Using an Automated Proximity-Based Fiber-Clustering Method , 2008, IEEE Transactions on Visualization and Computer Graphics.

[42]  Hsiao-Wen Chung,et al.  Effects of interpolation methods in spatial normalization of diffusion tensor imaging data on group comparison of fractional anisotropy. , 2009, Magnetic resonance imaging.

[43]  Rachid Deriche,et al.  Deterministic and Probabilistic Tractography Based on Complex Fibre Orientation Distributions , 2009, IEEE Transactions on Medical Imaging.

[44]  J. R. Reichenbach,et al.  A new combined distance measure for the clustering of fiber tracts in Diffusion Tensor Imaging ( DTI ) , 2009 .

[45]  Diffusions-MRT des Gehirns im Kindesalter , 2011, Monatsschrift Kinderheilkunde.

[46]  Arthur W. Toga,et al.  Atlas-guided tract reconstruction for automated and comprehensive examination of the white matter anatomy , 2010, NeuroImage.

[47]  L. Lagae,et al.  Construction of a stereotaxic DTI atlas with full diffusion tensor information for studying white matter maturation from childhood to adolescence using tractography‐based segmentations , 2009, Human brain mapping.

[48]  J. R. Reichenbach,et al.  GPGPU-Computing for the cluster analysis of fiber tracts : Replacing a $ 15000 high end PC with a $ 500 graphics card , 2010 .

[49]  A. Dale,et al.  Quantitative Histological Validation of Diffusion MRI Fiber Orientation Distributions in the Rat Brain , 2010, PloS one.

[50]  Stephen T. C. Wong,et al.  A hybrid approach to automatic clustering of white matter fibers , 2010, NeuroImage.

[51]  Rachid Deriche,et al.  Unsupervised white matter fiber clustering and tract probability map generation: Applications of a Gaussian process framework for white matter fibers , 2010, NeuroImage.

[52]  Maxime Descoteaux,et al.  Robust clustering of massive tractography datasets , 2011, NeuroImage.

[53]  Arno Klein,et al.  A reproducible evaluation of ANTs similarity metric performance in brain image registration , 2011, NeuroImage.

[54]  Timothy Edward John Behrens,et al.  Automated Probabilistic Reconstruction of White-Matter Pathways in Health and Disease Using an Atlas of the Underlying Anatomy , 2011, Front. Neuroinform..

[55]  A semi-automatic approach for the extraction of white matter fiber bundles across subjects , 2011 .

[56]  Jan K. Buitelaar,et al.  Partition-based mass clustering of tractography streamlines , 2011, NeuroImage.

[57]  Linda J. Lanyon,et al.  Diffusion Tensor Imaging: Structural Connectivity Insights, Limitations and Future Directions , 2012 .

[58]  Mark W. Woolrich,et al.  FSL , 2012, NeuroImage.

[59]  Jiliu Zhou,et al.  Globally optimized fiber tracking and hierarchical clustering -- a unified framework. , 2012, Magnetic resonance imaging.

[60]  Guy B. Williams,et al.  QuickBundles, a Method for Tractography Simplification , 2012, Front. Neurosci..

[61]  Jean-Francois Mangin,et al.  Automatic fiber bundle segmentation in massive tractography datasets using a multi-subject bundle atlas , 2012, NeuroImage.

[62]  Daniel Güllmar,et al.  Quantitative fiber bundle-based analysis of diffusion-weighted MRI data , 2012 .

[63]  Carl-Fredrik Westin,et al.  Fiber clustering versus the parcellation-based connectome , 2013, NeuroImage.

[64]  Dinggang Shen,et al.  Application of neuroanatomical features to tractography clustering , 2013, Human brain mapping.