Leveraging Neural Networks and Genetic Algorithms to Refine Electrode Properties in Redox Flow Batteries

[1]  Wei Wang,et al.  Machine Learning Coupled Multi‐Scale Modeling for Redox Flow Batteries , 2019, Advanced Theory and Simulations.

[2]  M. Kok,et al.  Multiphysics Simulation of the Flow Battery Cathode: Cell Architecture and Electrode Optimization , 2016 .

[3]  Cliff T. Ragsdale,et al.  Combining a neural network with a genetic algorithm for process parameter optimization , 2000 .

[4]  L. Zeng,et al.  Formation of electrodes by self-assembling porous carbon fibers into bundles for vanadium redox flow batteries , 2018, Journal of Power Sources.

[5]  David G. Dorrell,et al.  Residual Capacity Estimation for Ultracapacitors in Electric Vehicles Using Artificial Neural Network , 2014 .

[6]  Hamid Reza Karimi,et al.  Parameter Matching Analysis of Hydraulic Hybrid Excavators Based on Dynamic Programming Algorithm , 2013, J. Appl. Math..

[7]  Puqiang Zhang,et al.  Data-driven method based on particle swarm optimization and k-nearest neighbor regression for estimating capacity of lithium-ion battery , 2014 .

[8]  Gang Qiu,et al.  Pore-scale analysis of effects of electrode morphology and electrolyte flow conditions on performance of vanadium redox flow batteries , 2012 .

[9]  Kristen A. Severson,et al.  Data-driven prediction of battery cycle life before capacity degradation , 2019, Nature Energy.

[10]  Fikile R. Brushett,et al.  Evaluation of Electrospun Fibrous Mats Targeted for Use as Flow Battery Electrodes , 2017 .

[11]  Joeri Van Mierlo,et al.  Random forest regression for online capacity estimation of lithium-ion batteries , 2018, Applied Energy.

[12]  Haifeng Shen,et al.  Neural Network Predictive Control for Vanadium Redox Flow Battery , 2013, J. Appl. Math..

[13]  M. Mench,et al.  Redox flow batteries: a review , 2011 .

[14]  Qinghua Liu,et al.  Dramatic performance gains in vanadium redox flow batteries through modified cell architecture , 2012 .

[15]  Fikile R. Brushett,et al.  The Critical Role of Supporting Electrolyte Selection on Flow Battery Cost , 2017 .

[16]  Holger R. Maier,et al.  Non-linear variable selection for artificial neural networks using partial mutual information , 2008, Environ. Model. Softw..

[17]  M. Perry,et al.  Advanced Redox-Flow Batteries: A Perspective , 2016 .

[18]  Qian Li,et al.  Optimization of injection molding process parameters using combination of artificial neural network and genetic algorithm method , 2007 .

[19]  C. Dennison,et al.  Laser-perforated carbon paper electrodes for improved mass-transport in high power density vanadium redox flow batteries , 2014 .

[20]  Oluwadamilola O. Taiwo,et al.  A pore network model of porous electrodes in electrochemical devices , 2019, Journal of Energy Storage.

[21]  Frank C. Walsh,et al.  Engineering aspects of the design, construction and performance of modular redox flow batteries for energy storage , 2017 .

[22]  Lu-Yin Lin,et al.  A two-dimensional porous electrode model for designing pore structure in a quinone-based flow cell , 2018, Journal of Energy Storage.

[23]  D. Brett,et al.  Insights into the Effect of Structural Heterogeneity in Carbonized Electrospun Fibrous Mats for Flow Battery Electrodes by X-Ray Tomography. , 2018, Small.

[24]  Xuelong Zhou,et al.  An improved thin-film electrode for vanadium redox flow batteries enabled by a dual layered structure , 2019, Journal of Power Sources.

[25]  Dan Boneh,et al.  On genetic algorithms , 1995, COLT '95.

[26]  Jung-Il Choi,et al.  Multiple parameter identification using genetic algorithm in vanadium redox flow batteries , 2020 .

[27]  Jin Zhao,et al.  Predicting the state of charge and health of batteries using data-driven machine learning , 2020, Nature Machine Intelligence.

[28]  Data-driven electrode parameter identification for vanadium redox flow batteries through experimental and numerical methods , 2020 .

[29]  R. Chein,et al.  Design and modeling of electrolyte pumping power reduction in redox flow cells , 2011 .

[30]  S. Litster,et al.  PEM fuel cell electrodes , 2004 .

[31]  Huamin Zhang,et al.  A three-dimensional model for negative half cell of the vanadium redox flow battery , 2011 .

[32]  Ali Emadi,et al.  State-of-charge estimation of Li-ion batteries using deep neural networks: A machine learning approach , 2018, Journal of Power Sources.

[33]  Fikile R. Brushett,et al.  Assessing the levelized cost of vanadium redox flow batteries with capacity fade and rebalancing , 2020 .

[34]  Zhongbao Wei,et al.  Online monitoring of state of charge and capacity loss for vanadium redox flow battery based on autoregressive exogenous modeling , 2018, Journal of Power Sources.

[35]  Fikile R. Brushett,et al.  Quantifying Mass Transfer Rates in Redox Flow Batteries , 2017 .

[36]  C. Dennison,et al.  Enhancing Mass Transport in Redox Flow Batteries by Tailoring Flow Field and Electrode Design , 2016 .

[37]  Ling Wang,et al.  A hybrid genetic algorithm-neural network strategy for simulation optimization , 2005, Appl. Math. Comput..

[38]  Maciej Haranczyk,et al.  Capturing chemical intuition in synthesis of metal-organic frameworks , 2019, Nature Communications.

[39]  Maria Skyllas-Kazacos,et al.  Chemical modification of graphite electrode materials for vanadium redox flow battery application—part II. Acid treatments , 1992 .

[40]  Fariborz Haghighat,et al.  Multiobjective optimization of building design using TRNSYS simulations, genetic algorithm, and Artificial Neural Network , 2010 .

[41]  Stefano Ermon,et al.  Closed-loop optimization of fast-charging protocols for batteries with machine learning , 2020, Nature.

[42]  S. Dou,et al.  A technology review of electrodes and reaction mechanisms in vanadium redox flow batteries , 2015 .

[43]  Fikile R. Brushett,et al.  Elucidating the Nuanced Effects of Thermal Pretreatment on Carbon Paper Electrodes for Vanadium Redox Flow Batteries. , 2018, ACS applied materials & interfaces.

[44]  Yan Zhao,et al.  A reliable approach of differentiating discrete sampled-data for battery diagnosis , 2020 .

[45]  T. Zhao,et al.  A two-dimensional model for the design of flow fields in vanadium redox flow batteries , 2019, International Journal of Heat and Mass Transfer.

[46]  M. Mench,et al.  In-situ current distribution and mass transport analysis via strip cell architecture for a vanadium redox flow battery , 2019, Journal of Power Sources.

[47]  S. Phinn,et al.  Australian vegetated coastal ecosystems as global hotspots for climate change mitigation , 2019, Nature Communications.

[48]  Yasunori Mitani,et al.  Optimization of a battery energy storage system using particle swarm optimization for stand-alone microgrids , 2016 .

[49]  M. Aziz,et al.  The effect of interdigitated channel and land dimensions on flow cell performance , 2018 .