Accurate measurements of dynamics and reproducibility in small genetic networks

Quantification of gene expression has become a central tool for understanding genetic networks. In many systems, the only viable way to measure protein levels is by immunofluorescence, which is notorious for its limited accuracy. Using the early Drosophila embryo as an example, we show that careful identification and control of experimental error allows for highly accurate gene expression measurements. We generated antibodies in different host species, allowing for simultaneous staining of four Drosophila gap genes in individual embryos. Careful error analysis of hundreds of expression profiles reveals that less than ∼20% of the observed embryo‐to‐embryo fluctuations stem from experimental error. These measurements make it possible to extract not only very accurate mean gene expression profiles but also their naturally occurring fluctuations of biological origin and corresponding cross‐correlations. We use this analysis to extract gap gene profile dynamics with ∼1 min accuracy. The combination of these new measurements and analysis techniques reveals a twofold increase in profile reproducibility owing to a collective network dynamics that relays positional accuracy from the maternal gradients to the pair‐rule genes.

[1]  D'arcy W. Thompson On Growth and Form , 1945 .

[2]  V. Wigglesworth,et al.  Local and General Factors in the Development of "Pattern" in Rhodnius Prolixus (Hemiptera) , 1940 .

[3]  What Is Life , 1944 .

[4]  J. Richelle,et al.  Determination of sensory bristles and pattern formation in Drosophila. II. The achaete-scute locus. , 1979, Developmental biology.

[5]  J. Richelle,et al.  Determination of sensory bristles and pattern formation in Drosophila. I. A model. , 1979, Developmental biology.

[6]  C. Nüsslein-Volhard,et al.  Mutations affecting segment number and polarity in Drosophila , 1980, Nature.

[7]  M. Akam,et al.  The molecular basis for metameric pattern in the Drosophila embryo. , 1987, Development.

[8]  P. Ingham The molecular genetics of embryonic pattern formation in Drosophila , 1988, Nature.

[9]  C. Nüsslein-Volhard,et al.  The bicoid protein determines position in the Drosophila embryo in a concentration-dependent manner , 1988, Cell.

[10]  T. Lacalli,et al.  Theoretical aspects of stripe formation in relation to Drosophila segmentation. , 1988, Development.

[11]  Wolfgang Driever,et al.  Determination of spatial domains of zygotic gene expression in the Drosophila embryo by the affinity of binding sites for the bicoid morphogen , 1989, Nature.

[12]  G. Odell,et al.  A genetic switch, based on negative regulation, sharpens stripes in Drosophila embryos. , 1989, Developmental genetics.

[13]  Diethard Tautz,et al.  A morphogenetic gradient of hunchback protein organizes the expression of the gap genes Krüppel and knirps in the early Drosophila embryo , 1990, Nature.

[14]  M. Levine,et al.  Spatial regulation of the gap gene giant during Drosophila development. , 1991, Development.

[15]  David H. Sharp,et al.  A connectionist model of development. , 1991, Journal of theoretical biology.

[16]  L. Held Bristle patterning in Drosophila , 1991, BioEssays : news and reviews in molecular, cellular and developmental biology.

[17]  V. Pirrotta,et al.  The giant gene of Drosophila encodes a b-ZIP DNA-binding protein that regulates the expression of other segmentation gap genes. , 1992, Development.

[18]  Peter A. Lawrence,et al.  Control of Drosophila body pattern by the hunchback morphogen gradient , 1992, Cell.

[19]  M. Chalfie GREEN FLUORESCENT PROTEIN , 1995, Photochemistry and photobiology.

[20]  David H. Sharp,et al.  Mechanism of eve stripe formation , 1995, Mechanisms of Development.

[21]  Norbert Perrimon,et al.  Activation of posterior gap gene expression in the Drosophila blastoderm , 1995, Nature.

[22]  D Kosman,et al.  Concentration-dependent patterning by an ectopic expression domain of the Drosophila gap gene knirps. , 1997, Development.

[23]  R. Cerrone,et al.  Drosophila embryonic pattern repair: how embryos respond to bicoid dosage alteration. , 1997, Development.

[24]  D. Sharp,et al.  Stripe forming architecture of the gap gene system. , 1998, Developmental genetics.

[25]  J. Whittle How is developmental stability sustained in the face of genetic variation? , 1998, The International journal of developmental biology.

[26]  J. Reinitz,et al.  Rapid preparation of a panel of polyclonal antibodies to Drosophila segmentation proteins , 1998, Development Genes and Evolution.

[27]  C. Alexandre,et al.  Wingless and Hedgehog pattern Drosophila denticle belts by regulating the production of short-range signals. , 1999, Development.

[28]  V. Hatini,et al.  Tissue- and stage-specific modulation of Wingless signaling by the segment polarity gene lines. , 2000, Genes & development.

[29]  D. Thieffry,et al.  A logical analysis of the Drosophila gap-gene system. , 2001, Journal of theoretical biology.

[30]  John Reinitz,et al.  Registration of the expression patterns of Drosophila segmentation genes by two independent methods , 2001, Bioinform..

[31]  C. Clarke,et al.  A gene expression screen in zebrafish embryogenesis. , 2001, Genome research.

[32]  M E Dickinson,et al.  Multi-spectral imaging and linear unmixing add a whole new dimension to laser scanning fluorescence microscopy. , 2001, BioTechniques.

[33]  Thomas Lecuit,et al.  slam encodes a developmental regulator of polarized membrane growth during cleavage of the Drosophila embryo. , 2002, Developmental cell.

[34]  S. Leibler,et al.  Establishment of developmental precision and proportions in the early Drosophila embryo , 2002, Nature.

[35]  Dmitri Papatsenko,et al.  A self-organizing system of repressor gradients establishes segmental complexity in Drosophila , 2003, Nature.

[36]  Daniel St Johnston,et al.  Seeing Is Believing The Bicoid Morphogen Gradient Matures , 2004, Cell.

[37]  David H. Sharp,et al.  Dynamical Analysis of Regulatory Interactions in the Gap Gene System of Drosophila melanogaster , 2004, Genetics.

[38]  William McGinnis,et al.  Multiplex Detection of RNA Expression in Drosophila Embryos , 2004, Science.

[39]  E. Wieschaus,et al.  Localized requirements for gene activity in segmentation of Drosophila embryos: analysis of armadillo, fused, giant and unpaired mutations in mosaic embryos , 2004, Roux's archives of developmental biology.

[40]  David H. Sharp,et al.  Dynamic control of positional information in the early Drosophila embryo , 2004, Nature.

[41]  Gregor Eichele,et al.  GenePaint.org: an atlas of gene expression patterns in the mouse embryo , 2004, Nucleic Acids Res..

[42]  E. Schrödinger,et al.  What is life? : the physical aspect of the living cell , 1946 .

[43]  A. Bejsovec,et al.  RacGap50C Negatively Regulates Wingless Pathway Activity During Drosophila Embryonic Development , 2005, Genetics.

[44]  N. Dostatni,et al.  Bicoid Determines Sharp and Precise Target Gene Expression in the Drosophila Embryo , 2005, Current Biology.

[45]  P. Lemaire,et al.  A Quantitative Approach to the Study of Cell Shapes and Interactions during Early Chordate Embryogenesis , 2006, Current Biology.

[46]  Alfonso Martinez Arias,et al.  Filtering transcriptional noise during development: concepts and mechanisms , 2006, Nature Reviews Genetics.

[47]  Charless C. Fowlkes,et al.  Three-dimensional morphology and gene expression in the Drosophila blastoderm at cellular resolution II: dynamics , 2006, Genome Biology.

[48]  E. Isacoff,et al.  Subunit counting in membrane-bound proteins , 2007, Nature Methods.

[49]  G. Rubin,et al.  Global analysis of patterns of gene expression during Drosophila embryogenesis , 2007, Genome Biology.

[50]  Arthur D Lander,et al.  Morpheus Unbound: Reimagining the Morphogen Gradient , 2007, Cell.

[51]  Allan R. Jones,et al.  Genome-wide atlas of gene expression in the adult mouse brain , 2007, Nature.

[52]  W. Bialek,et al.  Probing the Limits to Positional Information , 2007, Cell.

[53]  W. Bialek,et al.  Stability and Nuclear Dynamics of the Bicoid Morphogen Gradient , 2007, Cell.

[54]  Michel Kerszberg,et al.  Specifying Positional Information in the Embryo: Looking Beyond Morphogens , 2007, Cell.

[55]  Charless C. Fowlkes,et al.  A Quantitative Spatiotemporal Atlas of Gene Expression in the Drosophila Blastoderm , 2008, Cell.

[56]  W. Bialek,et al.  Information flow and optimization in transcriptional regulation , 2007, Proceedings of the National Academy of Sciences.

[57]  Jingyuan Deng,et al.  Probing intrinsic properties of a robust morphogen gradient in Drosophila. , 2008, Developmental cell.

[58]  Manu,et al.  Characterization of the Drosophila segment determination morphome. , 2008, Developmental biology.

[59]  D. Arnosti,et al.  Image processing and analysis for quantifying gene expression from early Drosophila embryos. , 2008, Tissue engineering. Part A.

[60]  D. Papatsenko,et al.  Stripe formation in the early fly embryo: principles, models, and networks , 2009, BioEssays : news and reviews in molecular, cellular and developmental biology.

[61]  P. R. ten Wolde,et al.  Role of spatial averaging in the precision of gene expression patterns. , 2009, Physical review letters.

[62]  John Reinitz,et al.  Estimation of errors introduced by confocal imaging into the data on segmentation gene expression in Drosophila , 2009, Bioinform..

[63]  Sung-jun Han,et al.  In situ visualization of gene expression using polymer-coated quantum-dot-DNA conjugates. , 2009, Small.

[64]  A. Tsirigos,et al.  Anterior-posterior positional information in the absence of a strong Bicoid gradient , 2009, Proceedings of the National Academy of Sciences.

[65]  Gasper Tkacik,et al.  Optimizing information flow in small genetic networks. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[66]  Fabian J Theis,et al.  Blind source separation techniques for the decomposition of multiply labeled fluorescence images. , 2009, Biophysical journal.

[67]  David H. Sharp,et al.  Canalization of Gene Expression in the Drosophila Blastoderm by Gap Gene Cross Regulation , 2009, PLoS biology.

[68]  David H. Sharp,et al.  Canalization of Gene Expression and Domain Shifts in the Drosophila Blastoderm by Dynamical Attractors , 2009, PLoS Comput. Biol..

[69]  John Reinitz,et al.  FlyEx, the quantitative atlas on segmentation gene expression at cellular resolution , 2008, Nucleic Acids Res..

[70]  Johannes Jaeger,et al.  Cellular and Molecular Life Sciences REVIEW The gap gene network , 2022 .

[71]  S. Bergmann,et al.  Precision and scaling in morphogen gradient read-out , 2010, Molecular systems biology.

[72]  Ahmet Ay,et al.  Deciphering a transcriptional regulatory code: modeling short-range repression in the Drosophila embryo , 2010, Molecular systems biology.

[73]  Manu,et al.  Consequences of Eukaryotic Enhancer Architecture for Gene Expression Dynamics, Development, and Fitness , 2011, PLoS genetics.

[74]  David W Tank,et al.  Measurement and perturbation of morphogen lifetime: effects on gradient shape. , 2011, Biophysical journal.

[75]  Dmitri Papatsenko,et al.  The Drosophila Gap Gene Network Is Composed of Two Parallel Toggle Switches , 2011, PloS one.

[76]  A. Lander Pattern, Growth, and Control , 2011, Cell.

[77]  John Reinitz,et al.  Mechanisms of gap gene expression canalization in the Drosophila blastoderm , 2011, BMC Systems Biology.

[78]  Eric F. Wieschaus,et al.  The Formation of the Bicoid Morphogen Gradient Requires Protein Movement from Anteriorly Localized mRNA , 2011, PLoS biology.

[79]  Anton Crombach,et al.  Efficient Reverse-Engineering of a Developmental Gene Regulatory Network , 2012, PLoS Comput. Biol..

[80]  Julien O. Dubuis,et al.  Quantifying positional information during early embryonic development , 2012 .

[81]  Gasper Tkacik,et al.  Positional information, in bits , 2010, Proceedings of the National Academy of Sciences.