Major evolutionary transitions in ant agriculture

Agriculture is a specialized form of symbiosis that is known to have evolved in only four animal groups: humans, bark beetles, termites, and ants. Here, we reconstruct the major evolutionary transitions that produced the five distinct agricultural systems of the fungus-growing ants, the most well studied of the nonhuman agriculturalists. We do so with reference to the first fossil-calibrated, multiple-gene, molecular phylogeny that incorporates the full range of taxonomic diversity within the fungus-growing ant tribe Attini. Our analyses indicate that the original form of ant agriculture, the cultivation of a diverse subset of fungal species in the tribe Leucocoprineae, evolved ≈50 million years ago in the Neotropics, coincident with the early Eocene climatic optimum. During the past 30 million years, three known ant agricultural systems, each involving a phylogenetically distinct set of derived fungal cultivars, have separately arisen from the original agricultural system. One of these derived systems subsequently gave rise to the fifth known system of agriculture, in which a single fungal species is cultivated by leaf-cutter ants. Leaf-cutter ants evolved remarkably recently (≈8–12 million years ago) to become the dominant herbivores of the New World tropics. Our analyses identify relict, extant attine ant species that occupy phylogenetic positions that are transitional between the agricultural systems. Intensive study of those species holds particular promise for clarifying the sequential accretion of ecological and behavioral characters that produced each of the major ant agricultural systems.

[1]  U. Mueller,et al.  The Origin of the Attine Ant-Fungus Mutualism , 2001, The Quarterly Review of Biology.

[2]  K. Crandall,et al.  Selecting the best-fit model of nucleotide substitution. , 2001, Systematic biology.

[3]  M. Sanderson Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. , 2002, Molecular biology and evolution.

[4]  T. Schultz,et al.  Phylogeny of fungus-growing ants (Tribe Attini) based on mtDNA sequence and morphology. , 1998, Molecular phylogenetics and evolution.

[5]  T. Schultz,et al.  A phylogenetic analysis of the fungus‐growing ants (Hymenoptera: Formicidae: Attini) based on morphological characters of the larvae , 1995 .

[6]  U. Mueller,et al.  Reciprocal illumination: a comparison of agriculture in humans and in fungus-growing ants. , 2005 .

[7]  U. Mueller,et al.  The evolution of agriculture in ants , 1998, Science.

[8]  Bruce D. Smith The Emergence of Agriculture , 1994 .

[9]  J. Diamond Guns, Germs, and Steel: The Fates of Human Societies , 1999 .

[10]  S. Ho,et al.  Relaxed Phylogenetics and Dating with Confidence , 2006, PLoS biology.

[11]  U. Mueller,et al.  Cryptic sex and many-to-one coevolution in the fungus-growing ant symbiosis. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[12]  S. Peña New View on Origin of Attine Ant–Fungus Mutualism: Exploitation of a Preexisting Insect–Fungus Symbiosis (Hymenoptera: Formicidae) , 2005 .

[13]  C. Brandão,et al.  Revisionary studies on the attine ant genus Trachymyrmex forel. Part 2: The Iheringi group (Hymenoptera: Formicidae) , 2005 .

[14]  U. Mueller,et al.  Convergent coevolution in the domestication of coral mushrooms by fungus–growing ants , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[15]  David Posada,et al.  MODELTEST: testing the model of DNA substitution , 1998, Bioinform..

[16]  John P. Huelsenbeck,et al.  MrBayes 3: Bayesian phylogenetic inference under mixed models , 2003, Bioinform..

[17]  D. Maddison,et al.  Mesquite: a modular system for evolutionary analysis. Version 2.6 , 2009 .

[18]  T. Schultz,et al.  Low host–pathogen specificity in the leaf-cutting ant–microbe symbiosis , 2007, Proceedings of the Royal Society B: Biological Sciences.

[19]  U. Mueller,et al.  Cryptic speciation in the fungus-growing ants Cyphomyrmex longiscapus Weber and Cyphomyrmex muelleri Schultz and Solomon, new species (Formicidae, Attini) , 2002, Insectes Sociaux.

[20]  C. Brandão,et al.  Revisionary studies on the attine ant genus Trachymyrmex Forel. Part 3: The Jamaicensis group (Hymenoptera: Formicidae) , 2007 .

[21]  A. Rambaut,et al.  BEAST: Bayesian evolutionary analysis by sampling trees , 2007, BMC Evolutionary Biology.

[22]  D. Swofford PAUP*: Phylogenetic analysis using parsimony (*and other methods), Version 4.0b10 , 2002 .

[23]  Norm Johnson,et al.  First description of fossil gardening ants. (Amber collection Stuttgart and Natural History Museum Basel; Hymenoptera: Formicidae. I: Attini.) , 1980 .

[24]  N. A. Weber Gardening ants, the attines , 1972 .

[25]  Michael P. Cummings,et al.  PAUP* [Phylogenetic Analysis Using Parsimony (and Other Methods)] , 2004 .

[26]  A. Mayhé-Nunes,et al.  A PHYLOGENETIC HYPOTHESIS FOR THE TRACHYMYRMEX SPECIES GROUPS, AND THE TRANSITION FROM FUNGUS-GROWING TO LEAF-CUTTING IN THE ATTINI , 2007 .

[27]  U. Mueller,et al.  Population genetic signatures of diffuse co‐evolution between leaf‐cutting ants and their cultivar fungi , 2006, Molecular ecology.

[28]  Brian D. Farrell,et al.  THE EVOLUTION OF AGRICULTURE IN BEETLES (CURCULIONIDAE: SCOLYTINAE AND PLATYPODINAE) , 2001, Evolution; international journal of organic evolution.

[29]  J. Felsenstein CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP , 1985, Evolution; international journal of organic evolution.

[30]  M. L. Andrade First descriptions of two new amber species of Cyphomyrmex from Mexico and the Dominican Republic (Hymenoptera: Formididae). , 2003 .

[31]  R. Macphee,et al.  Age and Paleogeographical Origin of Dominican Amber , 1996, Science.

[32]  Gi-Ho Sung,et al.  Ancient Tripartite Coevolution in the Attine Ant-Microbe Symbiosis , 2003, Science.

[33]  P. S. Ward,et al.  The ant subfamily Pseudomyrmecinae (Hymenoptera: Formicidae): phylogeny and evolution of big‐eyed arboreal ants , 2005 .

[34]  W. M. Wheeler The Fungus-Growing Ants of North America. , 2010 .

[35]  M. Sanderson,et al.  ABSOLUTE DIVERSIFICATION RATES IN ANGIOSPERM CLADES , 2001, Evolution; international journal of organic evolution.

[36]  W. M. Wheeler,et al.  Social Life Among the Insects , 1922 .

[37]  Chad D. Brock,et al.  Host-symbiont stability and fast evolutionary rates in an ant-bacterium association: cospeciation of camponotus species and their endosymbionts, candidatus blochmannia. , 2004, Systematic biology.

[38]  R. M. Meyer Guns, Germs, and Steel: The Fates of Human Societies , 2000 .

[39]  U. Mueller,et al.  EVOLUTION OF ANT‐CULTIVAR SPECIALIZATION AND CULTIVAR SWITCHING IN APTEROSTIGMA FUNGUS‐GROWING ANTS , 2004 .

[40]  James A. Scott,et al.  Fungus-growing ants use antibiotic-producing bacteria to control garden parasites , 1999, Nature.

[41]  M. Sogin,et al.  Low variation in ribosomal DNA and internal transcribed spacers of the symbiotic fungi of leaf-cutting ants (Attini: Formicidae). , 2004, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas.

[42]  U. Mueller,et al.  Free-living fungal symbionts (Lepiotaceae) of fungus-growing ants (Attini: Formicidae) , 2009, Mycologia.

[43]  J. Boomsma,et al.  Experimental evidence of a tripartite mutualism: bacteria protect ant fungus gardens from specialized parasites , 2003 .

[44]  T. Schultz,et al.  Phylogeny of the attine ant fungi based on analysis of small subunit ribosomal RNA gene sequences. , 1994, Science.

[45]  T. Schultz THE FUNGUS-GROWING ANT GENUS APTEROSTIGMA IN DOMINICAN AMBER , 2007 .

[46]  Michael J. Sanderson,et al.  R8s: Inferring Absolute Rates of Molecular Evolution, Divergence times in the Absence of a Molecular Clock , 2003, Bioinform..

[47]  N. A. Weber, Gardening Ants. The Attines. XVII und 146 S., 192 Abb., 7 Tab. Philadelphia 1972: American Philosoph. Soc. $ 8.00 , 1973 .

[48]  U. Mueller,et al.  Extensive exchange of fungal cultivars between sympatric species of fungus‐growing ants , 2002, Molecular ecology.

[49]  C. Currie,et al.  Phylogenetic analysis of mutualistic filamentous bacteria associated with fungus-growing ants. , 2005, Canadian journal of microbiology.

[50]  Ted R. Schultz,et al.  Evolutionary History of the Symbiosis Between Fungus-Growing Ants and Their Fungi , 1994, Science.

[51]  B. Bolton Synopsis and classification of Formicidae , 2003 .

[52]  E. Wilson The Insect Societies , 1974 .

[53]  U. Mueller,et al.  Complex host-pathogen coevolution in the Apterostigma fungus-growing ant-microbe symbiosis , 2006, BMC Evolutionary Biology.

[54]  Alexei J Drummond,et al.  Choosing appropriate substitution models for the phylogenetic analysis of protein-coding sequences. , 2006, Molecular biology and evolution.

[55]  Peter Wilf,et al.  High Plant Diversity in Eocene South America: Evidence from Patagonia , 2003, Science.

[56]  P. Lewis A likelihood approach to estimating phylogeny from discrete morphological character data. , 2001, Systematic biology.

[57]  D. Aanen,et al.  The evolution of fungus-growing termites and their mutualistic fungal symbionts , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[58]  Brian L. Fisher,et al.  Evaluating alternative hypotheses for the early evolution and diversification of ants , 2006, Proceedings of the National Academy of Sciences.

[59]  Norm Johnson,et al.  A revision of the Neotropical fungus-growing ants of the genus Cyphomyrmex Mayr. Part II. Group of rimosus (Spinola) (Hym. Formicidae). , 1966 .

[60]  U. Mueller,et al.  The Evolution of Agriculture in Insects , 2005 .

[61]  Derrick J. Zwickl Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion , 2006 .

[62]  U. Mueller,et al.  The agricultural pathology of ant fungus gardens. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[63]  Robert C. Dunnell,et al.  The Origins of Agriculture: An Evolutionary Perspective , 1987 .