The β-Globin LCR Is Not Necessary for an Open Chromatin Structure or Developmentally Regulated Transcription of the Native Mouse β-Globin Locus

[1]  M. Groudine,et al.  Description and Targeted Deletion of 5′ Hypersensitive Site 5 and 6 of the Mouse β-Globin Locus Control Region , 1998 .

[2]  M. Groudine,et al.  The Locus Control Region Is Necessary for Gene Expression in the Human β-Globin Locus but Not the Maintenance of an Open Chromatin Structure in Erythroid Cells , 1998, Molecular and Cellular Biology.

[3]  F. Grosveld,et al.  The Dynamics of Globin Gene Expression and Gene Therapy Vectors , 1998, Annals of the New York Academy of Sciences.

[4]  W Miller,et al.  Locus control regions of mammalian beta-globin gene clusters: combining phylogenetic analyses and experimental results to gain functional insights. , 1997, Gene.

[5]  D. Kioussis,et al.  Locus control regions: overcoming heterochromatin-induced gene inactivation in mammals. , 1997, Current opinion in genetics & development.

[6]  G. Keller,et al.  A common precursor for primitive erythropoiesis and definitive haematopoiesis , 1997, Nature.

[7]  P. Geyer,et al.  The role of insulator elements in defining domains of gene expression. , 1997, Current opinion in genetics & development.

[8]  M. Greaves,et al.  Multilineage gene expression precedes commitment in the hemopoietic system. , 1997, Genes & development.

[9]  J. Strouboulis,et al.  Heterochromatin Effects on the Frequency and Duration of LCR-Mediated Gene Transcription , 1996, Cell.

[10]  M. Groudine,et al.  Regulation of β-globin gene expression: straightening out the locus , 1996 .

[11]  T. Ley,et al.  Analysis of mice containing a targeted deletion of beta-globin locus control region 5' hypersensitive site 3 , 1996, Molecular and cellular biology.

[12]  Fournier Preparation and Properties of Microcell Hybrids , 1996, Methods.

[13]  M. Groudine,et al.  Efficient modification of human chromosomal alleles using recombination-proficient chicken/human microcell hybrids , 1996, Nature Genetics.

[14]  D. Scalzo,et al.  Transcriptional enhancers act in cis to suppress position-effect variegation. , 1996, Genes & development.

[15]  G. Stamp,et al.  Mice lacking cyclin D1 are small and show defects in eye and mammary gland development. , 1995, Genes & development.

[16]  T. Ley,et al.  Targeted deletion of 5'HS2 of the murine beta-globin LCR reveals that it is not essential for proper regulation of the beta-globin locus. , 1995, Genes & development.

[17]  S. Elledge,et al.  Cyclin D1 provides a link between development and oncogenesis in the retina and breast , 1995, Cell.

[18]  F. Morlé,et al.  Targeted inactivation of the major positive regulatory element (HS-40) of the human alpha-globin gene locus , 1995 .

[19]  M. Groudine,et al.  Enhancers increase the probability but not the level of gene expression. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[20]  S. Orkin,et al.  Regulation of globin gene expression in erythroid cells. , 1995, European journal of biochemistry.

[21]  L. Madisen,et al.  Identification of a locus control region in the immunoglobulin heavy-chain locus that deregulates c-myc expression in plasmacytoma and Burkitt's lymphoma cells. , 1994, Genes & development.

[22]  S. Weissman,et al.  Developmental regulation of human gamma- and beta-globin genes in the absence of the locus control region , 1994 .

[23]  T. Jenuwein,et al.  Dependence of enhancer-mediated transcription of the immunoglobulin mu gene on nuclear matrix attachment regions. , 1994, Science.

[24]  M. Worwood,et al.  Red cell dimorphism in a young man with a constitutional chromosomal translocation t(11;22)(p15.5;q11.21) , 1994, British journal of haematology.

[25]  V. Stewart,et al.  Mutations of the intronic IgH enhancer and its flanking sequences differentially affect accessibility of the JH locus. , 1993, The EMBO journal.

[26]  M. Groudine,et al.  An "in-out" strategy using gene targeting and FLP recombinase for the functional dissection of complex DNA regulatory elements: analysis of the beta-globin locus control region. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[27]  J. D. Engel Developmental regulation of human beta-globin gene transcription: a switch of loyalties? , 1993, Trends in genetics : TIG.

[28]  K. Rajewsky,et al.  Independent control of immunoglobulin switch recombination at individual switch regions evidenced through Cre-loxP-mediated gene targeting , 1993, Cell.

[29]  M. Groudine,et al.  Helix-loop-helix transcription factors E12 and E47 are not essential for skeletal or cardiac myogenesis, erythropoiesis, chondrogenesis, or neurogenesis. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[30]  W. C. Forrester,et al.  Inactivation of the human beta-globin gene by targeted insertion into the beta-globin locus control region. , 1992, Genes & development.

[31]  J. Seidman,et al.  Production of homozygous mutant ES cells with a single targeting construct , 1992, Molecular and cellular biology.

[32]  T. Ley,et al.  Conservation of the primary structure, organization, and function of the human and mouse beta-globin locus-activating regions. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[33]  W. C. Forrester,et al.  A deletion of the human beta-globin locus activation region causes a major alteration in chromatin structure and replication across the entire beta-globin locus. , 1990, Genes & development.

[34]  B. Alter,et al.  Gamma delta beta-thalassemia due to a de novo mutation deleting the 5' beta-globin gene activation-region hypersensitive sites. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[35]  W. C. Forrester,et al.  Molecular analysis of the human beta-globin locus activation region. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[36]  N. Martin,et al.  A single erythroid-specific DNase I super-hypersensitive site activates high levels of human beta-globin gene expression in transgenic mice. , 1989, Genes & development.

[37]  R. Grosschedl,et al.  Stable propagation of the active transcriptional state of an immunoglobulin μ gene requires continuous enhancer function , 1988, Cell.

[38]  M. Groudine,et al.  Asynchronous DNA replication within the human beta-globin gene locus. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[39]  G. Stamatoyannopoulos,et al.  Developmental programs of human erythroleukemia cells: globin gene expression and methylation , 1988, Molecular and cellular biology.

[40]  H. Weintraub,et al.  Formation of stable transcription complexes as assayed by analysis of individual templates. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[41]  G. Kollias,et al.  Position-independent, high-level expression of the human β-globin gene in transgenic mice , 1987, Cell.

[42]  W. C. Forrester,et al.  Evidence for a locus activation region: the formation of developmentally stable hypersensitive sites in globin-expressing hybrids. , 1987, Nucleic acids research.

[43]  D. Kioussis,et al.  γδβ-Thalassaemias 1 and 2 are the result of a 100 kbp deletion in the human β-globin cluster , 1986 .

[44]  James T. Elder,et al.  A developmentally stable chromatin structure in the human beta-globin gene cluster. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[45]  D. Tuan,et al.  The "beta-like-globin" gene domain in human erythroid cells. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[46]  J. Lingrel,et al.  Erythroid‐specific expression of human beta‐globin genes in transgenic mice. , 1985, The EMBO journal.

[47]  F. Costantini,et al.  Developmental regulation of a cloned adult β-globin gene in transgenic mice , 1985, Nature.

[48]  W. Schaffner,et al.  Simian virus 40 enhancer increases RNA polymerase density within the linked gene , 1985, Nature.

[49]  R. Treisman,et al.  Simian virus 40 enhancer increases number of RNA polymerase II molecules on linked DNA , 1985, Nature.

[50]  G. Sorenson,et al.  Expression of the human calcitonin/CGRP gene in lung and thyroid carcinoma. , 1985, The EMBO journal.

[51]  D. Kioussis,et al.  Unexpected relationships between four large deletions in the human β-globin gene cluster , 1983, Cell.

[52]  P. Chambon,et al.  The SV40 72 base repair repeat has a striking effect on gene expression both in SV40 and other chimeric recombinants. , 1981, Nucleic acids research.

[53]  M. Wiles,et al.  Hematopoietic commitment during embryonic stem cell differentiation in culture. , 1993, Molecular and cellular biology.

[54]  M. Reitman,et al.  Control of globin gene transcription. , 1990, Annual review of cell biology.

[55]  N. Iscove,et al.  Representative in Vitro cDNA Amplification From Individual Hemopoietic Cells and Colonies , 1990 .

[56]  M. Vidal,et al.  A dominant control region from the human β-globin locus conferring integration site-independent gene expression , 1989, Nature.

[57]  R. Palmiter,et al.  High-level erythroid expression of human alpha-globin genes in transgenic mice. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[58]  P. Rowley,et al.  K562 human leukemia cell passages differ in embryonic globin gene expression. , 1984, Leukemia research.

[59]  D. Kioussis,et al.  β-Globin gene inactivation by DNA translocation in γβ-thalassaemi , 1983, Nature.