Matrices with eigenvectors in a given subspace

The Kalman variety of a linear subspace in a vector space consists of all endomorphism that possess an eigenvector in that subspace. We study the defining polynomials and basic geometric invariants of the Kalman variety.

[1]  A. Borel,et al.  CHARACTERISTIC CLASSES AND HOMOGENEOUS SPACES, I.* , 1958 .

[2]  R. E. Kalman,et al.  Contributions to the Theory of Optimal Control , 1960 .

[3]  M.L.J. Hautus,et al.  Controllability and observability conditions of linear autonomous systems , 1969 .

[4]  Thomas L. Saaty,et al.  Multicriteria Decision Making: The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation , 1990 .

[5]  Thomas Kailath,et al.  Linear Systems , 1980 .

[6]  Dan Shemesh,et al.  Common eigenvectors of two matrices , 1984 .

[7]  T. Saaty,et al.  The Analytic Hierarchy Process , 1985 .

[8]  John R. Stembridge,et al.  A Maple Package for Symmetric Functions , 1995, J. Symb. Comput..

[9]  T. Saaty,et al.  Ranking by Eigenvector Versus Other Methods in the Analytic Hierarchy Process , 1998 .

[10]  B. Sturmfels,et al.  Combinatorial Commutative Algebra , 2004 .

[11]  U. Helmke,et al.  Conditioned Invariant Subspaces and the Geometry of Nilpotent Matrices , 2005 .

[12]  Simultaneous versal deformations of endomorphisms and invariant subspaces , 2006 .

[13]  Geometric combinatorics of Kalman algebras , 2006 .

[14]  Christoph Koutschan,et al.  Advanced applications of the holonomic systems approach , 2010, ACCA.

[15]  Karine Beauchard,et al.  Large Time Asymptotics for Partially Dissipative Hyperbolic Systems , 2011 .

[16]  Ngoc Mai Tran,et al.  Pairwise ranking: choice of method can produce arbitrarily different rank order , 2011, 1103.1110.

[17]  Equations and syzygies of some Kalman varieties , 2011, 1105.5756.