Matrices with eigenvectors in a given subspace
暂无分享,去创建一个
[1] A. Borel,et al. CHARACTERISTIC CLASSES AND HOMOGENEOUS SPACES, I.* , 1958 .
[2] R. E. Kalman,et al. Contributions to the Theory of Optimal Control , 1960 .
[3] M.L.J. Hautus,et al. Controllability and observability conditions of linear autonomous systems , 1969 .
[4] Thomas L. Saaty,et al. Multicriteria Decision Making: The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation , 1990 .
[5] Thomas Kailath,et al. Linear Systems , 1980 .
[6] Dan Shemesh,et al. Common eigenvectors of two matrices , 1984 .
[7] T. Saaty,et al. The Analytic Hierarchy Process , 1985 .
[8] John R. Stembridge,et al. A Maple Package for Symmetric Functions , 1995, J. Symb. Comput..
[9] T. Saaty,et al. Ranking by Eigenvector Versus Other Methods in the Analytic Hierarchy Process , 1998 .
[10] B. Sturmfels,et al. Combinatorial Commutative Algebra , 2004 .
[11] U. Helmke,et al. Conditioned Invariant Subspaces and the Geometry of Nilpotent Matrices , 2005 .
[12] Simultaneous versal deformations of endomorphisms and invariant subspaces , 2006 .
[13] Geometric combinatorics of Kalman algebras , 2006 .
[14] Christoph Koutschan,et al. Advanced applications of the holonomic systems approach , 2010, ACCA.
[15] Karine Beauchard,et al. Large Time Asymptotics for Partially Dissipative Hyperbolic Systems , 2011 .
[16] Ngoc Mai Tran,et al. Pairwise ranking: choice of method can produce arbitrarily different rank order , 2011, 1103.1110.
[17] Equations and syzygies of some Kalman varieties , 2011, 1105.5756.