Powder Processing Effects on the Rapid Low‐Temperature Densification of ZrB2–SiC Ultra‐High Temperature Ceramic Composites Using Spark Plasma Sintering

Investigating the powder processing effects on a ZrB2–25 vol% SiC ceramic composite densified using spark plasma sintering (SPS) allows for identification of densification mechanisms and enables a reduction in sintering temperature to a minimum of 1650°C. Attrition milling (AM) and ball milling (BM) were investigated as processing methods to produce a fine and coarse powder densified using SPS with or without a tube furnace preheat treatment. Ceramics formed from AM and BM powders contain 1.66 wt% oxygen contamination, primarily ZrO2 and SiO2, and 0.35 wt% oxygen contamination as SiO2, respectively. Heat treatment slightly reduces oxygen contamination but has significant impacts on the densification mechanisms. Without heat treatment, powder coarsening dominates the initial sintering process in the SPS inhibiting densification until ~1350°C. After heat treatment, sintering and densification is enabled at low temperature, 1000°C–1100°C. The densification of ZrB2–SiC composites can be broken into a two-step process with phase 1 as the sintering step based on powder surface area reduction and phase 2 as a forging step where high-temperature creep and pressure eliminate porosity after the primary grains have formed. A time–temperature-density plot illustrates the change in densification mechanism used to fully densify ZrB2–SiC composites in SPS.

[1]  D. Pejaković,et al.  Thermal and Electrical Transport Properties of Spark Plasma‐Sintered HfB2 and ZrB2 Ceramics , 2011 .

[2]  J. Zou,et al.  Chemical Reactions, Anisotropic Grain Growth and Sintering Mechanisms of Self‐Reinforced ZrB2–SiC Doped with WC , 2011 .

[3]  G. Hilmas,et al.  Effect of Starting Particle Size and Oxygen Content on Densification of ZrB2 , 2011 .

[4]  Zuhair A. Munir,et al.  Electric Current Activation of Sintering: A Review of the Pulsed Electric Current Sintering Process , 2011 .

[5]  Sylvia M. Johnson,et al.  Physical characterization and arcjet oxidation of hafnium-based ultra high temperature ceramics fabricated by hot pressing and field-assisted sintering , 2010 .

[6]  J. Garay Current-Activated, Pressure-Assisted Densification of Materials , 2010 .

[7]  S. Guo,et al.  Transmission electron microscopy characterization of spark plasma sintered ZrB2 ceramic , 2010 .

[8]  T. Parthasarathy,et al.  Oxidation Behavior of Zirconium Diboride Silicon Carbide Produced by the Spark Plasma Sintering Method , 2009 .

[9]  T. Goto,et al.  Microstructure and densification of ZrB2–SiC composites prepared by spark plasma sintering , 2009 .

[10]  S. Guo,et al.  Densification of ZrB2-based composites and their mechanical and physical properties: A review , 2009 .

[11]  Y. Yan,et al.  Pressureless sintering of ZrB2–SiC ceramics: the effect of B4C content , 2009 .

[12]  S. Guo,et al.  Elastic properties of spark plasma sintered (SPSed) ZrB2–ZrC–SiC composites , 2008 .

[13]  Jiecai Han,et al.  Spark plasma sintering and hot pressing of ZrB2–SiCW ultra-high temperature ceramics , 2008 .

[14]  M. Nygren,et al.  Spark plasma sintering of ultra refractory compounds , 2008 .

[15]  J. Zaykoski,et al.  Flexural Creep Deformation of ZrB2/SiC Ceramics in Oxidizing Atmosphere , 2008 .

[16]  Jianxue Liu,et al.  In Situ Synthesis of Ultrafine ZrB2–SiC Composite Powders and the Pressureless Sintering Behaviors , 2008 .

[17]  Javier E. Garay,et al.  Transparent/translucent polycrystalline nanostructured yttria stabilized zirconia with varying colors , 2008 .

[18]  G. Hilmas,et al.  Microwave sintering of a ZrB2–B4C particulate ceramic composite , 2008 .

[19]  K. Lu Sintering of nanoceramics , 2008 .

[20]  G. Hilmas,et al.  Pressureless Sintering of ZrB2–SiC Ceramics , 2007 .

[21]  Guo‐Jun Zhang,et al.  Preparation and Microstructure of a ZrB2–SiC Composite Fabricated by the Spark Plasma Sintering–Reactive Synthesis (SPS–RS) Method , 2007 .

[22]  Zuhair A. Munir,et al.  Transparent Nanometric Cubic and Tetragonal Zirconia Obtained by High‐Pressure Pulsed Electric Current Sintering , 2007 .

[23]  Jiecai Han,et al.  Oxidation behavior of zirconium diboride-silicon carbide at 1800 °C , 2007 .

[24]  D. Fang,et al.  Processing and Mechanical Properties of Zirconium Diboride‐Based Ceramics Prepared by Spark Plasma Sintering , 2007 .

[25]  William G. Fahrenholtz,et al.  Refractory Diborides of Zirconium and Hafnium , 2007 .

[26]  G. Hilmas,et al.  Effect of hot pressing time and temperature on the microstructure and mechanical properties of ZrB2–SiC , 2007 .

[27]  G. Hilmas,et al.  Fabrication and properties of reactively hot pressed ZrB2–SiC ceramics , 2007 .

[28]  William G. Fahrenholtz,et al.  Thermodynamic Analysis of ZrB2–SiC Oxidation: Formation of a SiC‐Depleted Region , 2007 .

[29]  G. Hilmas,et al.  Pressureless Densification of Zirconium Diboride with Boron Carbide Additions , 2006 .

[30]  Z. A. Munir,et al.  Fast low-temperature consolidation of bulk nanometric ceramic materials , 2006 .

[31]  Xuemei Liu,et al.  Neck Formation and Self-Adjusting Mechanism of Neck Growth of Conducting Powders in Spark Plasma Sintering , 2006 .

[32]  D. Sciti,et al.  Fast Densification of Ultra‐High‐Temperature Ceramics by Spark Plasma Sintering , 2006 .

[33]  Erica L. Corral,et al.  Ultra High Temperature Ceramics for Hypersonic Vehicle Applications , 2006 .

[34]  D. Van Wie,et al.  The hypersonic environment: Required operating conditions and design challenges , 2004 .

[35]  J. Zaykoski,et al.  Oxidation-based materials selection for 2000°C + hypersonic aerosurfaces: Theoretical considerations and historical experience , 2004 .

[36]  M. Nygren,et al.  Transparent nanocrystalline MgO by rapid and low-temperature spark plasma sintering , 2004 .

[37]  Z. A. Munir,et al.  Consolidation of Nanostructured β‐SiC by Spark Plasma Sintering , 2004 .

[38]  Donald T. Ellerby,et al.  High‐Strength Zirconium Diboride‐Based Ceramics , 2004 .

[39]  Alida Bellosi,et al.  Processing and properties of zirconium diboride-based composites , 2002 .

[40]  J. Margrave,et al.  VAPORIZATION OF INORGANIC SUBSTANCES: B$sub 2$O$sub 3$, TeO$sub 2$, AND Mg$sub 3$N$sub 2$ , 1955 .