A period-doubling cascade precedes chaos for planar maps.

A period-doubling cascade is often seen in numerical studies of those smooth (one-parameter families of) maps for which as the parameter is varied, the map transitions from one without chaos to one with chaos. Our emphasis in this paper is on establishing the existence of such a cascade for many maps with phase space dimension 2. We use continuation methods to show the following: under certain general assumptions, if at one parameter there are only finitely many periodic orbits, and at another parameter value there is chaos, then between those two parameter values there must be a cascade. We investigate only families that are generic in the sense that all periodic orbit bifurcations are generic. Our method of proof in showing there is one cascade is to show there must be infinitely many cascades. We discuss in detail two-dimensional families like those which arise as a time-2π maps for the Duffing equation and the forced damped pendulum equation.

[1]  M. Zakrzhevsky New concepts of nonlinear dynamics : complete bifurcation groups , protuberances , unstable periodic infinitiums and rare attractors , 2008 .

[2]  S. Newhouse,et al.  Diffeomorphisms with infinitely many sinks , 1974 .

[3]  Laurent Larger,et al.  From flow to map in an experimental high-dimensional electro-optic nonlinear delay oscillator. , 2005, Physical review letters.

[4]  John W M Bush,et al.  Chaotic bouncing of a droplet on a soap film. , 2009, Physical review letters.

[5]  Madhura R. Joglekar,et al.  Fixed points indices and period-doubling cascades , 2010 .

[6]  Christopher K. R. T. Jones,et al.  Global dynamical behavior of the optical field in a ring cavity , 1985 .

[7]  Bo Deng,et al.  Glucose-induced period-doubling cascade in the electrical activity of pancreatic β-cells , 1999, Journal of mathematical biology.

[8]  G. Whitesides,et al.  Nonlinear dynamics of a flow-focusing bubble generator: an inverted dripping faucet. , 2005, Physical review letters.

[9]  J. Eckmann,et al.  On universality for area-preserving maps of the plane , 1981 .

[10]  J. Eckmann,et al.  A note on the power spectrum of the iterates of Feigenbaum's function , 1981 .

[11]  H. Yahata Onset of Chaos in the Rayleigh-Benard Convection , 1984 .

[12]  D. Sullivan Quasiconformal Homeomorphisms in Dynamics , Topology , and Geometry , 2010 .

[13]  Pierre Collet,et al.  Period doubling bifurcations for families of maps on ℝn , 1981 .

[14]  James A. Yorke,et al.  Snakes: Oriented families of periodic orbits, their sources, sinks, and continuation , 1982 .

[15]  Persistence of the Feigenbaum Attractor in One-Parameter Families , 1999 .

[16]  Pierre Coullet,et al.  ITÉRATIONS D'ENDOMORPHISMES ET GROUPE DE RENORMALISATION , 1978 .

[17]  James A. Yorke,et al.  How often do simple dynamical processes have infinitely many coexisting sinks? , 1986 .

[18]  J. C. Tatjer,et al.  PERIOD DOUBLING AND REDUCIBILITY IN THE QUASI-PERIODICALLY FORCED LOGISTIC MAP , 2011, 1112.4065.

[19]  H. E. Nusse,et al.  Wild hyperbolic sets, yet no chance for the coexistence of infinitely many KLUS-simple Newhouse attracting sets , 1992 .

[20]  Period-doubling cascades and strange attractors in the triple-well phi6-Van der Pol oscillator , 2008 .

[21]  Shui-Nee Chow,et al.  Global Hopf bifurcation from a multiple eigenvalue , 1978 .

[22]  Parametric excitation and chaos through dust-charge fluctuation in a dusty plasma , 2007, 0708.0684.

[23]  O. Lanford A computer-assisted proof of the Feigenbaum conjectures , 1982 .

[24]  Gregory I. Sivashinsky,et al.  A Sequence of Period Doublings and Chaotic Pulsations in a Free Boundary Problem Modeling Thermal Instabilities , 1994, SIAM J. Appl. Math..

[25]  M. Feigenbaum The universal metric properties of nonlinear transformations , 1979 .

[26]  E. Catsigeras,et al.  The real analytic Feigenbaum–Coullet–Tresser attractor in the disc , 2008, 0805.1152.

[27]  Nicholas C. Metropolis,et al.  On Finite Limit Sets for Transformations on the Unit Interval , 1973, J. Comb. Theory A.

[28]  J. Milnor Topology from the differentiable viewpoint , 1965 .

[29]  Vassilios Kovanis,et al.  Period‐doubling route to chaos in a semiconductor laser subject to optical injection , 1994 .

[30]  R M May,et al.  Biological Populations with Nonoverlapping Generations: Stable Points, Stable Cycles, and Chaos , 1974, Science.

[31]  Alberto Carpinteri,et al.  Towards Chaos in Vibrating Damaged Structures—Part I: Theory and Period Doubling Cascade , 2005 .

[32]  James A. Yorke,et al.  Preturbulence: A regime observed in a fluid flow model of Lorenz , 1979 .

[33]  D. Sullivan,et al.  Quasiconformal Homeomorphisms and Dynamics III. The Teichmüller Space of a Holomorphic Dynamical System , 1998 .

[34]  J. G. Freire,et al.  Relative abundance and structure of chaotic behavior: the nonpolynomial Belousov-Zhabotinsky reaction kinetics. , 2009, The Journal of chemical physics.

[35]  Pierre Collet,et al.  Universal properties of maps on an interval , 1980 .

[36]  Period-doubling cascades for large perturbations of Hénon families , 2009, 0903.3607.

[37]  U. Ebert,et al.  Period doubling cascade in glow discharges: local versus global differential conductivity. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  I. R. Sataev,et al.  Multiparameter Critical Situations, Universality and Scaling in Two-Dimensional Period-Doubling Maps , 2005 .

[39]  C. Sparrow The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors , 1982 .

[40]  James A. Yorke,et al.  Connecting Period-Doubling Cascades to Chaos , 2010, Int. J. Bifurc. Chaos.

[41]  M. Lyubich Feigenbaum-Coullet-Tresser universality and Milnor's hairiness conjecture. , 1999, math/9903201.

[42]  M. Lyubich,et al.  The full renormalization horseshoe for unimodal maps of higher degree: exponential contraction along hybrid classes , 2010, 1005.4828.

[43]  J. Yorke,et al.  Cascades of period-doubling bifurcations: A prerequisite for horseshoes , 1983 .

[44]  E. Catsigeras Cascades of Period Doubling Bifurcations in n Dimensions , 1996 .

[45]  J. Yorke,et al.  The homotopy continuation method: numerically implementable topological procedures , 1978 .

[46]  P. J. Myrberg Iteration der reellen Polynome zweiten Grades III , 1964 .

[47]  Nicholas B. Tufillaro,et al.  Experimental approach to nonlinear dynamics and chaos , 1992, Studies in nonlinearity.

[48]  Period-doubling cascades galore , 2009, Ergodic Theory and Dynamical Systems.

[49]  J. Franks Period doubling and the Lefschetz formula , 1985 .

[50]  James A. Yorke,et al.  The implicit function theorem and the global methods of cohomology , 1976 .

[51]  S. Kuznetsov,et al.  Birth of a New Class of Period-Doubling Scaling Behavior as a Result of Bifurcation in the Renormalization Equation , 2008 .

[52]  Paul H. Rabinowitz,et al.  Some global results for nonlinear eigenvalue problems , 1971 .

[53]  J. Alexander,et al.  GLOBAL BIFURCATIONS OF PERIODIC ORBITS. , 1978 .

[54]  A. Gorodetski,et al.  How often surface diffeomorphisms have infinitely many sinks and hyperbolicity of periodic points near a homoclinic tangency , 2007 .

[55]  J. Guckenheimer ONE‐DIMENSIONAL DYNAMICS * , 1980 .

[56]  H. Epstein New proofs of the existence of the Feigenbaum functions , 1986 .

[57]  J. Eckmann,et al.  Iterated maps on the interval as dynamical systems , 1980 .