A Low Profile Switchable Pattern Directivity Antenna using Circular Sectorized EBG

In this paper, a low profile patch antenna switchable radiation pattern diversity with total thickness of less than λ 0 /14 has been established.. The novel antenna structure is based on a conformal patch antenna operating in TM01 mode is integrated over an electromagnetic band gap (EBG) surface to provide a beam scanning antenna. The circular EBG elements are arranged in 6-sectors and the vias on each sector of the EBG are switched in and out to steer the beam into that sectors. The reflection coefficients for the antenna when the vias are switched remain stable. The simulation and experimentation results have shown that the antenna power pattern directed toward the sector, without via or the middle of sectors, without via. Overall a flexible low profile beam steering antenna is demonstrated. The antenna is designed for wireless network application especially to improve the system performance in multipath propagation environment. Furthermore, the low profile antenna makes it suitable to be used in vehicular application

[1]  L. Shafai,et al.  Application of combined electric- and magnetic-conductor ground planes for antenna performance enhancement , 2008, Canadian Journal of Electrical and Computer Engineering.

[2]  R.G. Vaughan,et al.  Antenna diversity in mobile communications , 1987, IEEE Transactions on Vehicular Technology.

[3]  Hyon Son,et al.  Analysis of corrugated surface wave antenna using hybrid MOM/UTD technique , 1999 .

[4]  Hiroyuki Arai,et al.  A flat diversity antenna by disk loaded monopole and three notches , 1994 .

[5]  Hao Xin,et al.  Mutual coupling reduction of low-profile monopole antennas on high-impedance ground plane , 2002 .

[6]  A. Kishk,et al.  A novel surface wave antenna with a monopole type pattern: a thin periodically loaded slab excited by a circular disk , 2005, 2005 IEEE Antennas and Propagation Society International Symposium.

[7]  Mario Sorolla,et al.  Enhanced patch-antenna performance by suppressing surface waves using photonic-bandgap substrates , 1999 .

[8]  M. Ali,et al.  A Miniature Spiral Diversity Antenna System With High Overall Gain Coverage and Low SAR , 2009, IEEE Antennas and Wireless Propagation Letters.

[9]  R. Vaughan Switched parasitic elements for antenna diversity , 1999 .

[10]  B.A. Cetiner,et al.  A compact wideband MEM switched diversity antenna for indoor mobile channels , 2003, IEEE MTT-S International Microwave Symposium Digest, 2003.

[11]  David V. Thiel,et al.  Switched Parasitic Antennas for Cellular Communications , 2002 .

[12]  M. Wennstrom,et al.  High-resolution direction finding using a switched parasitic antenna , 2001, Proceedings of the 11th IEEE Signal Processing Workshop on Statistical Signal Processing (Cat. No.01TH8563).

[13]  D. Sievenpiper,et al.  A steerable leaky-wave antenna using a tunable impedance ground plane , 2002, IEEE Antennas and Wireless Propagation Letters.

[14]  R. Hansen,et al.  Scanning surface wave antennas--Oblique surface waves over a corrugated conductor , 1958 .

[16]  Fan Yang,et al.  A Dual Band Surface Wave Antenna with a Monopole Like Pattern , 2006, 2006 IEEE Antennas and Propagation Society International Symposium.

[17]  D. Sievenpiper,et al.  A tunable impedance surface performing as a reconfigurable beam steering reflector , 2002 .

[18]  James H. Schaffner,et al.  Low-profile, four-sector diversity antenna on high-impedance ground plane , 2000 .

[19]  Leopold B. Felsen Radiation from a tapered surface wave antenna , 1960 .

[20]  Zahriladha Zakaria,et al.  ANTeNNA BeAm STeeRINg USINg SeCTORIzeD SqUARe eBg , 2012 .

[21]  R. Langley,et al.  Microstrip Patch Antenna Array Mutual Coupling Reduction using Capacitive Loaded Miniaturized EBG , 2012 .

[22]  Markus Berg,et al.  Varactor Tunable Helical Antenna , 2007 .

[23]  D. Sievenpiper,et al.  Forward and backward leaky wave radiation with large effective aperture from an electronically tunable textured surface , 2005, IEEE Transactions on Antennas and Propagation.

[24]  S. Khamas,et al.  Antenna control using EBG , 2011, Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP).

[25]  M. Okoniewski,et al.  Realizing an electronically tunable reflectarray using varactor diode-tuned elements , 2005, IEEE Microwave and Wireless Components Letters.

[26]  Fan Yang,et al.  A Low-Profile Dual-Band Surface Wave Antenna With a Monopole-Like Pattern , 2007, IEEE Transactions on Antennas and Propagation.

[27]  Y. Rahmat-Samii,et al.  Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: a low mutual coupling design for array applications , 2003 .

[28]  S. Weeks Low profile. , 1996, Nursing standard (Royal College of Nursing (Great Britain) : 1987).

[29]  Xiao Dong Chen,et al.  Low profile diversity antenna for MIMO applications , 2006 .

[30]  D. Sievenpiper,et al.  High-impedance electromagnetic surfaces with a forbidden frequency band , 1999 .

[31]  R. J. Langley,et al.  Antenna pattern diversity using EBG , 2010, 2010 Loughborough Antennas & Propagation Conference.

[32]  C. Mias,et al.  A Varactor-Tunable High Impedance Surface With a Resistive-Lumped-Element Biasing Grid , 2007, IEEE Transactions on Antennas and Propagation.

[33]  M. S. I. M. Zin,et al.  A novel technique of controlling signal propagation within array elements using switchable miniaturized electromagnetic band gap , 2013, 2013 IEEE Symposium on Wireless Technology & Applications (ISWTA).

[34]  R. Elliott,et al.  Spherical surface-wave antennas , 1956 .

[35]  Ahmed A. Kishk,et al.  Low-profile patch-fed surface wave antenna with a monopole-like radiation pattern , 2007 .

[36]  R.W.P. King,et al.  Novel surface-wave antenna , 1996 .

[37]  Zhenghe Feng,et al.  A novel dual-band compact electromagnetic bandgap (EBG) structure and its application in multi-antennas , 2006, 2006 IEEE Antennas and Propagation Society International Symposium.

[38]  A. Khaleghi,et al.  A Pattern Diversity Antenna with Parasitic Switching Elements for Wireless LAN Communications , 2005, 2005 2nd International Symposium on Wireless Communication Systems.

[39]  Hyok J. Song,et al.  Two-dimensional beam steering using an electrically tunable impedance surface , 2003 .

[40]  Garik Markarian,et al.  Hybrid TOA-Based MIMO and DOA -Based Beamforming for Location and Positioning in WiMAX Networks , 2012 .

[41]  Fan Yang,et al.  A low profile surface wave antenna equivalent to a vertical monopole antenna , 2004, IEEE Antennas and Propagation Society Symposium, 2004..

[42]  M. S. I. M. Zin,et al.  Simulation of virtual MIMO base stations for mobile location in IMT-Advanced networks , 2012, 2012 IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE).

[43]  C. Balanis Antenna theory , 1982 .