On the Parameterized Complexity of Red-Blue Points Separation

We study the following geometric separation problem: Given a set $R$ of red points and a set $B$ of blue points in the plane, find a minimum-size set of lines that separate $R$ from $B$. We show that, in its full generality, parameterized by the number of lines $k$ in the solution, the problem is unlikely to be solvable significantly faster than the brute-force $n^{O(k)}$-time algorithm, where $n$ is the total number of points. Indeed, we show that an algorithm running in time $f(k)n^{o(k/ \log k)}$, for any computable function $f$, would disprove ETH. Our reduction crucially relies on selecting lines from a set with a large number of different slopes (i.e., this number is not a function of $k$). Conjecturing that the problem variant where the lines are required to be axis-parallel is FPT in the number of lines, we show the following preliminary result. Separating $R$ from $B$ with a minimum-size set of axis-parallel lines is FPT in the size of either set, and can be solved in time $O^*(9^{|B|})$ (assuming that $B$ is the smallest set).

[1]  Hung Son Nguyen,et al.  Approximate Boolean Reasoning: Foundations and Applications in Data Mining , 2006, Trans. Rough Sets.

[2]  Panos Giannopoulos,et al.  On the parameterized complexity of red-blue points separation , 2019, J. Comput. Geom..

[3]  Steven Skiena,et al.  Some Lower Bounds on Geometric Separability Problems , 2006, Int. J. Comput. Geom. Appl..

[4]  Nimrod Megiddo,et al.  Linear-time algorithms for linear programming in R3 and related problems , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[5]  Olivier Devillers,et al.  Separating several point sets in the plane , 2001, CCCG.

[6]  Usama M. Fayyad,et al.  Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning , 1993, IJCAI.

[7]  Mark de Berg,et al.  Separating bichromatic point sets by L-shapes , 2015, Comput. Geom..

[8]  Herbert Edelsbrunner,et al.  Minimum Polygonal Separation , 1986, Inf. Comput..

[9]  Ferran Hurtado,et al.  Separability by two lines and by nearly straight polygonal chains , 2004, Discret. Appl. Math..

[10]  Joseph S. B. Mitchell Approximation Algorithms for Geometric Separation Problems , 2009 .

[11]  Tapio Elomaa,et al.  Improved Algorithms for Univariate Discretization of Continuous Features , 2007, PKDD.

[12]  Russell Impagliazzo,et al.  Complexity of k-SAT , 1999, Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317).

[13]  Tillmann Miltzow,et al.  Parameterized Hardness of Art Gallery Problems , 2016, ESA.

[14]  Timothy M. Chan Polynomial-time approximation schemes for packing and piercing fat objects , 2003, J. Algorithms.

[15]  Michal Pilipczuk,et al.  Optimal Parameterized Algorithms for Planar Facility Location Problems Using Voronoi Diagrams , 2015, ESA.

[16]  Yin-Feng Xu,et al.  On a Minimum Linear Classification Problem , 2006, J. Glob. Optim..

[17]  Sariel Har-Peled,et al.  On Separating Points by Lines , 2017, Discrete & Computational Geometry.

[18]  Nimrod Megiddo,et al.  On the complexity of polyhedral separability , 1988, Discret. Comput. Geom..

[19]  Jiri Matousek,et al.  Lectures on discrete geometry , 2002, Graduate texts in mathematics.

[20]  Guy E. Blelloch,et al.  Compact representations of simplicial meshes in two and three dimensions , 2005, Int. J. Comput. Geom. Appl..

[21]  Gary L. Miller,et al.  Separators for sphere-packings and nearest neighbor graphs , 1997, JACM.

[22]  Dániel Marx,et al.  Can you beat treewidth? , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[23]  William L. Steiger,et al.  Algorithms for ham-sandwich cuts , 1994, CCCG.

[24]  Marc van Kreveld,et al.  Identifying Well-Covered Minimal Bounding Rectangles in 2 D Point Data , 2009 .

[25]  Marc Noy,et al.  Separating objects in the plane by wedges and strips , 2001, Discret. Appl. Math..

[26]  Peng-Jun Wan,et al.  Separating points by axis-parallel lines , 2005, CCCG.

[27]  Günter Rote,et al.  Fixed-parameter tractability and lower bounds for stabbing problems , 2013, Comput. Geom..

[28]  Joseph S. B. Mitchell,et al.  On the Complexity of Shattering Using Arrangements , 1991 .

[29]  Saket Saurabh,et al.  Fixed-parameter algorithms for Cochromatic Number and Disjoint Rectangle Stabbing via iterative localization , 2013, Inf. Comput..

[30]  Dániel Marx,et al.  Parameterized Complexity of Independence and Domination on Geometric Graphs , 2006, IWPEC.

[31]  N. Megiddo,et al.  Computing circular separability , 1986 .

[32]  Gary L. Miller,et al.  Automatic Mesh Partitioning , 1992 .

[33]  Nicholas C. Wormald,et al.  Geometric separator theorems and applications , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[34]  Bin Fu,et al.  Geometric Separators and Their Applications to Protein Folding in the HP-Model , 2007, SIAM J. Comput..

[35]  Gary L. Miller,et al.  Separators in two and three dimensions , 1990, STOC '90.

[36]  Sinh Hoa Nguyen,et al.  On Finding Optimal Discretizations for Two Attributes , 1998, Rough Sets and Current Trends in Computing.