Size-dependent reactivity in hydrosilylation of silicon nanocrystals.

We present an investigation into the influence of nanocrystal size on the reactivity of silicon nanocrystals (Si-NCs) in near-UV photochemical hydrosilylation. The size-dependent reactivity of Si-NCs with photoluminescence (PL) in the visible and near-infrared regions was evaluated using PL and Fourier-transform infrared (FTIR) spectroscopy, and small-angle X-ray scattering (SAXS). Under near-UV excitation, Si-NCs with PL in the visible spectral region react faster than Si-NCs with near-IR PL, allowing partial separation of a mixture of Si-NC sizes through hydrosilylation. This is attributed to quantum size effects in the exciton-mediated mechanisms proposed for this reaction.

[1]  Yoshihiko Kanemitsu,et al.  Evidence of quantum size effect in nanocrystalline silicon by optical absorption , 2001 .

[2]  J. Gooding,et al.  Wet chemical routes to the assembly of organic monolayers on silicon surfaces via the formation of Si-C bonds: surface preparation, passivation and functionalization. , 2010, Chemical Society reviews.

[3]  R. Cicero,et al.  Olefin additions on H-Si(111): Evidence for a surface chain reaction initiated at isolated dangling bonds , 2002 .

[4]  M. Swihart,et al.  Surface functionalization of silicon nanoparticles produced by laser-driven pyrolysis of silane followed by HF-HNO3 etching. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[5]  Matthew R. Linford,et al.  Alkyl Monolayers on Silicon Prepared from 1-Alkenes and Hydrogen-Terminated Silicon , 1995 .

[6]  Michael J Sailor,et al.  Biodegradable luminescent porous silicon nanoparticles for in vivo applications. , 2009, Nature materials.

[7]  J. Veinot,et al.  Synthesis, surface functionalization, and properties of freestanding silicon nanocrystals. , 2006, Chemical communications.

[8]  Matthew R. Linford,et al.  Alkyl monolayers covalently bonded to silicon surfaces , 1993 .

[9]  H. Zuilhof,et al.  Photochemical attachment of organic monolayers onto H-terminated Si(111): radical chain propagation observed via STM studies. , 2004, Journal of the American Chemical Society.

[10]  R. Elliman,et al.  Effect of Hydrogen on the Photoluminescence of Si Nanocrystals Embedded in a SiO 2 Matrix , 2001 .

[11]  H. L. Jackson,et al.  Control of peroxidizable compounds , 1970 .

[12]  J. Buriak,et al.  Trapping silicon surface-based radicals. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[13]  V. Timokhin,et al.  Chapter 2 - Silyl Radicals in Chemical Synthesis , 2008 .

[14]  J. Buriak,et al.  Exciton-mediated hydrosilylation on photoluminescent nanocrystalline silicon. , 2001, Journal of the American Chemical Society.

[15]  J. Kelly,et al.  An investigation into near-UV hydrosilylation of freestanding silicon nanocrystals. , 2010, ACS nano.

[16]  Barbara K. Hughes,et al.  Structural, optical, and electrical properties of PbSe nanocrystal solids treated thermally or with simple amines. , 2008, Journal of the American Chemical Society.

[17]  S. Bernstorff,et al.  Study of amorphous nanocrystalline thin silicon films by grazing-incidence small-angle X-ray scattering , 2007 .

[18]  J. Kelly,et al.  X-ray Absorption Spectroscopy of Functionalized Silicon Nanocrystals , 2010 .

[19]  J. L. Hueso,et al.  Alkyl passivation and amphiphilic polymer coating of silicon nanocrystals for diagnostic imaging. , 2010, Small.

[20]  R. Cicero,et al.  Photoreactivity of Unsaturated Compounds with Hydrogen-Terminated Silicon(111) , 2000 .

[21]  G. Giorgi,et al.  Nonradical mechanisms for the uncatalyzed thermal functionalization of silicon surfaces by alkenes and alkynes: a density functional study. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[22]  C. Hessel,et al.  Hydrogen Silsesquioxane: A Molecular Precursor for Nanocrystalline Si−SiO2 Composites and Freestanding Hydride-Surface-Terminated Silicon Nanoparticles , 2006 .

[23]  F. Effenberger,et al.  Photoactivated Preparation and Patterning of Self-Assembled Monolayers with 1-Alkenes and Aldehydes on Silicon Hydride Surfaces. , 1998, Angewandte Chemie.

[24]  Ken-Tye Yong,et al.  Biocompatible luminescent silicon quantum dots for imaging of cancer cells. , 2008, ACS nano.

[25]  H. Datta,et al.  Alkyl-Capped Silicon Nanocrystals Lack Cytotoxicity and have Enhanced Intracellular Accumulation in Malignant Cells via Cholesterol-Dependent Endocytosis , 2008, Small.

[26]  R. Hamers,et al.  UV-induced grafting of alkenes to silicon surfaces: photoemission versus excitons. , 2010, Journal of the American Chemical Society.

[27]  Giulia Galli,et al.  Optically activated functionalization reactions in Si quantum dots. , 2003, Journal of the American Chemical Society.

[28]  Jillian M Buriak,et al.  Organometallic chemistry on silicon and germanium surfaces. , 2002, Chemical reviews.

[29]  C. Hessel,et al.  An investigation of the formation and growth of oxide-embedded silicon nanocrystals in hydrogen silsesquioxane-derived nanocomposites , 2007 .

[30]  H. Zuilhof,et al.  Self-assembly of high-quality covalently bound organic monolayers onto silicon. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[31]  A. G. Cullis,et al.  The structural and luminescence properties of porous silicon , 1997 .

[32]  E. Sudhölter,et al.  Covalently attached monolayers on crystalline hydrogen-terminated silicon: extremely mild attachment by visible light. , 2005, Journal of the American Chemical Society.

[33]  S. C. Bayliss,et al.  The Culture of Mammalian Cells on Nanostructured Silicon , 1999 .

[34]  P. F. Szajowski,et al.  Quantum Confinement in Size-Selected, Surface-Oxidized Silicon Nanocrystals , 1993, Science.

[35]  Nicolas H Voelcker,et al.  The biocompatibility of porous silicon in tissues of the eye. , 2009, Biomaterials.

[36]  Z. Popović,et al.  Amine-terminated silicon nanoparticles: synthesis, optical properties and their use in bioimaging , 2009 .

[37]  M. Kovalenko,et al.  Colloidal Nanocrystals with Molecular Metal Chalcogenide Surface Ligands , 2009, Science.

[38]  D. Nagesha,et al.  Biorelevant Calcification and Non‐Cytotoxic Behavior in Silicon Nanowires , 2005 .

[39]  M. Sailor,et al.  Detection of nitrobenzene, DNT, and TNT vapors by quenching of porous silicon photoluminescence , 2000, Chemistry.

[40]  Ernst J. R. Sudhölter,et al.  An Improved Method for the Preparation of Organic Monolayers of 1-Alkenes on Hydrogen-Terminated Silicon Surfaces , 1999 .

[41]  R. Boukherroub,et al.  New Synthetic Routes to Alkyl Monolayers on the Si(111) Surface1 , 1999 .

[42]  R. Weissleder A clearer vision for in vivo imaging , 2001, Nature Biotechnology.

[43]  Robert Elliman,et al.  Effect of particle size on the photoluminescence from hydrogen passivated Si nanocrystals in SiO2 , 2001 .

[44]  S. Patole,et al.  A kinetic model of the formation of organic monolayers on hydrogen-terminated silicon by hydrosilation of alkenes. , 2005, The journal of physical chemistry. B.

[45]  G. Lopinski,et al.  Self-directed growth of molecular nanostructures on silicon , 2000, Nature.

[46]  J. Cornelisse THE META PHOTOCYCLOADDITION OF ARENES TO ALKENES , 1993 .

[47]  Robert Elliman,et al.  Photoluminescence from Si nanocrystals in silica: The effect of hydrogen , 2001 .

[48]  Dmitri V Talapin,et al.  PbSe Nanocrystal Solids for n- and p-Channel Thin Film Field-Effect Transistors , 2005, Science.

[49]  Hong Ding,et al.  Biocompatible magnetofluorescent probes: luminescent silicon quantum dots coupled with superparamagnetic iron(III) oxide. , 2010, ACS nano.

[50]  J. E. Bateman,et al.  A Deuterium Labeling, FTIR, and Ab Initio Investigation of the Solution-Phase Thermal Reactions of Alcohols and Alkenes with Hydrogen-Terminated Silicon Surfaces , 2000 .

[51]  H. Zuilhof,et al.  Self-assembly of organic monolayers onto hydrogen-terminated silicon: 1-alkynes are better than 1-alkenes. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[52]  I. Kovačević,et al.  Si nanocrystals in SiO2 films analyzed by small angle X-ray scattering , 2007 .

[53]  J. Jorné,et al.  Electronic States and Luminescence in Porous Silicon Quantum Dots: The Role of Oxygen , 1999 .

[54]  Mark T Swihart,et al.  Efficient surface grafting of luminescent silicon quantum dots by photoinitiated hydrosilylation. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[55]  Kelly P. Knutsen,et al.  Multiple exciton generation in colloidal silicon nanocrystals. , 2007, Nano letters.

[56]  Jae Hee Song,et al.  Quenching of Photoluminescence from Porous Silicon by Aromatic Molecules , 1997 .

[57]  Hong Ding,et al.  In vivo targeted cancer imaging, sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystals. , 2011, ACS nano.

[58]  D. J. Lockwood,et al.  Ideal passivation of luminescent porous silicon by thermal, noncatalytic reaction with alkenes and aldehydes , 2001 .

[59]  J. Kelly,et al.  Sol-gel precursors for group 14 nanocrystals. , 2010, Chemical communications.