A framework for engineering quantum likelihood functions for expectation estimation
暂无分享,去创建一个
Yudong Cao | Guoming Wang | Dax Enshan Koh | Peter D. Johnson | Peter D. Johnson | Yudong Cao | Guoming Wang | D. E. Koh
[1] Yuan Feng,et al. Parameter Estimation of Quantum Channels , 2008, IEEE Transactions on Information Theory.
[2] M Steffen,et al. Characterization of addressability by simultaneous randomized benchmarking. , 2012, Physical review letters.
[3] S. Lloyd,et al. Quantum metrology. , 2005, Physical review letters.
[4] Maria Schuld,et al. Quantum Machine Learning in Feature Hilbert Spaces. , 2018, Physical review letters.
[5] John Preskill,et al. Quantum Computing in the NISQ era and beyond , 2018, Quantum.
[6] Nathan Wiebe,et al. Efficient Bayesian Phase Estimation. , 2015, Physical review letters.
[7] Mingyu Sun,et al. Efficient characterization of correlated SPAM errors , 2018, 1810.10523.
[8] Rory A. Fisher,et al. Theory of Statistical Estimation , 1925, Mathematical Proceedings of the Cambridge Philosophical Society.
[9] Matthew B. Hastings,et al. Faster phase estimation , 2013, Quantum Inf. Comput..
[10] E. Knill,et al. Optimal quantum measurements of expectation values of observables , 2006, quant-ph/0607019.
[11] S. Brierley,et al. Accelerated Variational Quantum Eigensolver. , 2018, Physical review letters.
[12] Naoki Yamamoto,et al. Amplitude estimation without phase estimation , 2019, Quantum Information Processing.
[13] Nathan Wiebe,et al. Randomized gap and amplitude estimation , 2016, 1603.03672.
[14] Yudong Cao,et al. Bayesian Inference with Engineered Likelihood Functions for Robust Amplitude Estimation , 2020 .
[15] Alexei Y. Kitaev,et al. Quantum measurements and the Abelian Stabilizer Problem , 1995, Electron. Colloquium Comput. Complex..
[16] B. Terhal,et al. Quantum phase estimation of multiple eigenvalues for small-scale (noisy) experiments , 2018, New Journal of Physics.