A framework for engineering quantum likelihood functions for expectation estimation

We develop a framework for characterizing and analyzing engineered likelihood functions (ELFs), which play an important role in the task of estimating the expectation values of quantum observables. These ELFs are obtained by choosing tunable parameters in a parametrized quantum circuit that minimize the expected posterior variance of an estimated parameter. We derive analytical expressions for the likelihood functions arising from certain classes of quantum circuits and use these expressions to pick optimal ELF tunable parameters. Finally, we show applications of ELFs in the Bayesian inference framework.

[1]  Yuan Feng,et al.  Parameter Estimation of Quantum Channels , 2008, IEEE Transactions on Information Theory.

[2]  M Steffen,et al.  Characterization of addressability by simultaneous randomized benchmarking. , 2012, Physical review letters.

[3]  S. Lloyd,et al.  Quantum metrology. , 2005, Physical review letters.

[4]  Maria Schuld,et al.  Quantum Machine Learning in Feature Hilbert Spaces. , 2018, Physical review letters.

[5]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[6]  Nathan Wiebe,et al.  Efficient Bayesian Phase Estimation. , 2015, Physical review letters.

[7]  Mingyu Sun,et al.  Efficient characterization of correlated SPAM errors , 2018, 1810.10523.

[8]  Rory A. Fisher,et al.  Theory of Statistical Estimation , 1925, Mathematical Proceedings of the Cambridge Philosophical Society.

[9]  Matthew B. Hastings,et al.  Faster phase estimation , 2013, Quantum Inf. Comput..

[10]  E. Knill,et al.  Optimal quantum measurements of expectation values of observables , 2006, quant-ph/0607019.

[11]  S. Brierley,et al.  Accelerated Variational Quantum Eigensolver. , 2018, Physical review letters.

[12]  Naoki Yamamoto,et al.  Amplitude estimation without phase estimation , 2019, Quantum Information Processing.

[13]  Nathan Wiebe,et al.  Randomized gap and amplitude estimation , 2016, 1603.03672.

[14]  Yudong Cao,et al.  Bayesian Inference with Engineered Likelihood Functions for Robust Amplitude Estimation , 2020 .

[15]  Alexei Y. Kitaev,et al.  Quantum measurements and the Abelian Stabilizer Problem , 1995, Electron. Colloquium Comput. Complex..

[16]  B. Terhal,et al.  Quantum phase estimation of multiple eigenvalues for small-scale (noisy) experiments , 2018, New Journal of Physics.