Oxide layer delamination: an energy dissipation mechanism during high-velocity microparticle impacts

[1]  B. Jodoin,et al.  Bonding Mechanisms in Cold Spray: Influence of Surface Oxidation During Powder Storage , 2020, Journal of Thermal Spray Technology.

[2]  K. Nelson,et al.  In situ observations of jetting in the divergent rebound regime for high-velocity metallic microparticle impact , 2020 .

[3]  Jasper Z. Lienhard,et al.  Surface oxide and hydroxide effects on aluminum microparticle impact bonding , 2020 .

[4]  K. Nelson,et al.  The Transition From Rebound to Bonding in High-Velocity Metallic Microparticle Impacts: Jetting-Associated Power-Law Divergence , 2020, Journal of Applied Mechanics.

[5]  K. Nelson,et al.  Impact-bonding with aluminum, silver, and gold microparticles: Toward understanding the role of native oxide layer , 2019, Applied Surface Science.

[6]  L. Brewer,et al.  Particle deformation and microstructure evolution during cold spray of individual Al-Cu alloy powder particles , 2019, Acta Materialia.

[7]  K. Ogawa,et al.  Elucidation of cold-spray deposition mechanism by auger electron spectroscopic evaluation of bonding interface oxide film , 2019, Acta Materialia.

[8]  K. Nelson,et al.  Response to Comment on “Adiabatic shear instability is not necessary for adhesion in cold spray” , 2018, Scripta Materialia.

[9]  S. H. Seyedein,et al.  Asymmetrical bonding in cold spraying of dissimilar materials , 2018, Applied Surface Science.

[10]  K. Nelson,et al.  In-situ observations of single micro-particle impact bonding , 2018 .

[11]  R. Gauvin,et al.  The Effect of Submicron Second-Phase Particles on the Rate of Grain Refinement in a Copper-Oxygen Alloy During Cold Spray , 2017, Journal of Thermal Spray Technology.

[12]  Changhee Lee,et al.  Influence of substrate roughness on bonding mechanism in cold spray , 2016 .

[13]  K. Nelson,et al.  Dynamics of supersonic microparticle impact on elastomers revealed by real–time multi–frame imaging , 2016, Scientific Reports.

[14]  K. Ogawa,et al.  Effect of Substrate Surface Oxide Film Thickness on Deposition Behavior and Deposition Efficiency in the Cold Spray Process , 2015, Journal of Thermal Spray Technology.

[15]  A. Michaelides,et al.  Atomistic details of oxide surfaces and surface oxidation: the example of copper and its oxides , 2015, 1508.01005.

[16]  Sangseok Yu,et al.  Cold spray induced amorphization at the interface between Fe coatings and Al substrate , 2015 .

[17]  P. Bertrand,et al.  Cold spraying: From process fundamentals towards advanced applications , 2015 .

[18]  S. Jian,et al.  Mechanical Properties of Cu2O Thin Films by Nanoindentation , 2013, Materials.

[19]  Wenya Li,et al.  Deposition behavior of thermally softened copper particles in cold spraying , 2013 .

[20]  K. Minoshima,et al.  Size effect on fracture toughness of freestanding copper nano-films , 2011 .

[21]  Wenya Li,et al.  Significant influence of particle surface oxidation on deposition efficiency, interface microstructure and adhesive strength of cold-sprayed copper coatings , 2010 .

[22]  Wenya Li,et al.  Some aspects on 3D numerical modeling of high velocity impact of particles in cold spraying by explicit finite element analysis , 2009 .

[23]  M. Jahedi,et al.  Microstructural Refinement within a Cold-Sprayed Copper Particle , 2009 .

[24]  Tobias Schmidt,et al.  Development of a generalized parameter window for cold spray deposition , 2006 .

[25]  H. Fang,et al.  Measurement of particle velocity and characterization of deposition in aluminum alloy kinetic spraying process , 2005 .

[26]  S. Hofmann Sputter-depth profiling for thin-film analysis , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[27]  Hamid Assadi,et al.  Bonding mechanism in cold gas spraying , 2003 .

[28]  S. Sampath,et al.  Impact of high velocity cold spray particles , 1999 .

[29]  Daniel W. Gorkiewicz,et al.  Kinetic spray coatings , 1999 .

[30]  M. Schütze Mechanical properties of oxide scales , 1995 .

[31]  J. Stringer,et al.  The adhesion of growing oxide scales to the substrate , 1993 .

[32]  B. Rickett,et al.  An X-ray photo-electron spectroscopic investigation of the air-formed film on copper , 1992 .

[33]  K. Johnson Contact Mechanics: Dynamic effects and impact , 1985 .

[34]  K. Nelson,et al.  Site-specific study of jetting, bonding, and local deformation during high-velocity metallic microparticle impact , 2021 .

[35]  Thaneshan Sapanathan,et al.  Cold Gas Dynamic Spray technology: a comprehensive review of processing conditions for various technological developments till to date , 2018 .

[36]  H. Liao,et al.  On the role of oxide film’s cleaning effect into the metallurgical bonding during cold spray , 2018 .

[37]  C. English,et al.  Microstructural characterisation techniques for the study of reactor pressure vessel (RPV) embrittlement , 2015 .

[38]  B. Johansson,et al.  Literature review on the properties of cuprous oxide Cu 2 O and the process of copper oxidation , 2012 .

[39]  J. Robertson,et al.  Limits to adherence of oxide scales , 1990 .