On the choice of the density matrix in the stochastic TMRG

In applications of the density matrix renormalization group to nonhermitean problems, the choice of the density matrix is not uniquely prescribed by the algorithm. We demonstrate that for the recently introduced stochastic transfer matrix DMRG (stochastic TMRG) the necessity to use open boundary conditions makes asymmetrical reduced density matrices, as used for renormalization in quantum TMRG, an inappropriate choice. An explicit construction of the largest left and right eigenvectors of the full transfer matrix allows us to show why symmetrical density matrices are the correct physical choice.

[1]  U. Schollwock,et al.  Universal finite-size scaling amplitudes in anisotropic scaling , 2000, cond-mat/0010061.

[2]  M. Henkel,et al.  Critical properties of the reaction-diffusion model 2A-->3A, 2A-->0. , 1999, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  K. Hallberg Density Matrix Renormalization , 1999, cond-mat/9910082.

[4]  M. Henkel,et al.  Density matrix renormalization group and reaction-diffusion processes , 1999, cond-mat/9902041.

[5]  T. Nishino,et al.  Fixed Point of the Finite System DMRG , 1998, cond-mat/9810241.

[6]  K. Maisinger,et al.  THERMODYNAMICS OF FRUSTRATED QUANTUM SPIN CHAINS , 1998, cond-mat/9803122.

[7]  I. Peschel,et al.  A DMRG study of the -symmetric Heisenberg chain , 1998, cond-mat/9802175.

[8]  Y. Hieida Application of the Density Matrix Renormalization Group Method to a Non-Equilibrium Problem , 1997, cond-mat/9711072.

[9]  T. Xiang,et al.  TRANSFER-MATRIX DENSITY-MATRIX RENORMALIZATION-GROUP THEORY FOR THERMODYNAMICS OF ONE-DIMENSIONAL QUANTUM SYSTEMS , 1997 .

[10]  N. Shibata Thermodynamics of the Anisotropic Heisenberg Chain Calculated by the Density Matrix Renormalization Group Method. , 1997, cond-mat/9706152.

[11]  T. Nishino Density Matrix Renormalization Group Method for 2D Classical Models , 1995, cond-mat/9508111.

[12]  White,et al.  Density-matrix algorithms for quantum renormalization groups. , 1993, Physical review. B, Condensed matter.

[13]  White,et al.  Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.

[14]  J. Spouge,et al.  Exact solutions for a diffusion-reaction process in one dimension. , 1988, Physical review letters.