Neurofilament protein: A selective marker for the architectonic parcellation of the visual cortex in adult cat brain

In this immunocytochemical study, we examined the expression profile of neurofilament protein in the cat visual system. We have used SMI‐32, a monoclonal antibody that recognizes a nonphosphorylated epitope on the medium‐ and high‐molecular‐weight subunits of neurofilament proteins. This antibody labels primarily the cell body and dendrites of pyramidal neurons in cortical layers III, V, and VI. Neurofilament protein‐immunoreactive neurons were prominent in 20 visual cortical areas (areas 17, 18, 19, 20a, 20b, 21a, 21b, and 7; posteromedial lateral, posterolateral lateral, anteromedial lateral, anterolateral lateral, dorsal lateral, ventral lateral, and posterior suprasylvian areas; anterior ectosylvian, the splenial, the cingulate, and insular visual areas; and the anterolateral gyrus area). In addition, we have also found strong immunopositive cells in the A laminae of the dorsal part of the lateral geniculate nucleus (dLGN) and in the medial interlaminar nucleus, but no immunoreactive cells were present in the parvocellular C (1–3) laminae of the dLGN, in the ventral part of the LGN and in the perigeniculate nucleus. This SMI‐32 antibody against neurofilament protein revealed a characteristic pattern of immunostaining in each visual area. The size, shape, intensity, and density of neurofilament protein‐immunoreactive neurons and their dendritic arborization differed substantially across all visual areas. Moreover, it was also obvious that several visual areas showed differences in laminar distribution and that such profiles may be used to delineate various cortical areas. Therefore, the expression of neurofilament protein can be used as a specific marker to define areal patterns and topographic boundaries in the cat visual system. J. Comp. Neurol. 441:345–368, 2001. © 2001 Wiley‐Liss, Inc.

[1]  B. Vogt,et al.  Cytology of human caudomedial cingulate, retrosplenial, and caudal parahippocampal cortices , 2001, The Journal of comparative neurology.

[2]  D. V. van Essen,et al.  Mapping of architectonic subdivisions in the macaque monkey, with emphasis on parieto‐occipital cortex , 2000, The Journal of comparative neurology.

[3]  D. Amaral,et al.  Macaque monkey retrosplenial cortex: I. Three‐dimensional and cytoarchitectonic organization , 2000, The Journal of comparative neurology.

[4]  G. Orban,et al.  Investigation of cortical reorganization in area 17 and nine extrastriate visual areas through the detection of changes in immediate early gene expression as induced by retinal lesions , 2000, The Journal of comparative neurology.

[5]  P. Hof,et al.  Neurochemical and Cellular Specializations in the Mammalian Neocortex Reflect Phylogenetic Relationships: Evidence from Primates, Cetaceans, and Artiodactyls , 2000, Brain, Behavior and Evolution.

[6]  J. Morrison,et al.  Numbers of Meynert and layer IVB cells in area V1: A stereologic analysis in young and aged macaque monkeys , 2000, The Journal of comparative neurology.

[7]  F. Reinoso-suárez,et al.  Cortical connections of the insular and adjacent parieto-temporal fields in the cat. , 2000, Cerebral cortex.

[8]  J. Kaas,et al.  Distinctive compartmental organization of human primary visual cortex. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[9]  M. Bickford,et al.  Neurofilament Proteins in Y-Cells of the Cat Lateral Geniculate Nucleus: Normal Expression and Alteration with Visual Deprivation , 1998, The Journal of Neuroscience.

[10]  H. Kennedy,et al.  Area‐specific laminar distribution of cortical feedback neurons projecting to cat area 17: Quantitative analysis in the adult and during ontogeny , 1998, The Journal of comparative neurology.

[11]  J. Morrison,et al.  Neurofilament and calcium‐binding proteins in the human cingulate cortex , 1997, The Journal of comparative neurology.

[12]  Francisco Clascá,et al.  Insular cortex and neighboring fields in the cat: A redefinition based on cortical microarchitecture and connections with the thalamus , 1997, The Journal of comparative neurology.

[13]  G A Orban,et al.  Functional impact of cerebral connections. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Leslie G. Ungerleider,et al.  Neurofilament protein is differentially distributed in subpopulations of corticocortical projection neurons in the macaque monkey visual pathways , 1996, The Journal of comparative neurology.

[15]  J. Morrison,et al.  Neurochemical, morphologic, and laminar characterization of cortical projection neurons in the cingulate motor areas of the macaque monkey , 1996, The Journal of comparative neurology.

[16]  P. Hof,et al.  Distribution of neuronal populations containing neurofilament protein and calcium-binding proteins in the canine neocortex: regional analysis and cell typology , 1996, Journal of Chemical Neuroanatomy.

[17]  P. Hof,et al.  Distribution of neurofilament protein and calcium-binding proteins parvalbumin, calbindin, and calretinin in the canine hippocampus , 1996, Journal of Chemical Neuroanatomy.

[18]  R. Chase,et al.  Comparative morphology of three types of projection‐identified pyramidal neurons in the superficial layers of cat visual cortex , 1996, The Journal of comparative neurology.

[19]  M. Cynader,et al.  Differential expression of neurofilament protein in the visual system of the vervet monkey , 1996, Brain Research.

[20]  R. Porchet,et al.  Differential expression and modification of neurofilament triplet proteins during cat cerebellar development , 1996, The Journal of comparative neurology.

[21]  S G Lomber,et al.  Reversible visual hemineglect. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[22]  C. Cusick,et al.  Neurochemical subdivisions of the inferior pulvinar in macaque monkeys , 1995, The Journal of comparative neurology.

[23]  J. Morrison,et al.  Neurochemical phenotype of corticocortical connections in the macaque monkey: Quantitative analysis of a subset of neurofilament protein‐immunoreactive projection neurons in frontal, parietal, temporal, and cingulate cortices , 1995, The Journal of comparative neurology.

[24]  B. Seltzer,et al.  Chemoarchitectonics and corticocortical terminations within the superior temporal sulcus of the rhesus monkey: Evidence for subdivisions of superior temporal polysensory cortex , 1995, The Journal of comparative neurology.

[25]  T. Yoshioka,et al.  Compartmental organization of layer IVA in human primary visual cortex , 1995, The Journal of comparative neurology.

[26]  J. Morrison,et al.  Human orbitofrontal cortex: Cytoarchitecture and quantitative immunohistochemical parcellation , 1995, The Journal of comparative neurology.

[27]  W Singer,et al.  Metabolic mapping of visual areas in the behaving cat: A[14C]2‐deoxyglucose study , 1995, The Journal of comparative neurology.

[28]  J. Morrison,et al.  Neurofilament protein defines regional patterns of cortical organization in the macaque monkey visual system: A quantitative immunohistochemical analysis , 1995, The Journal of comparative neurology.

[29]  C. Blakemore,et al.  Analysis of connectivity in the cat cerebral cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[30]  J. Price,et al.  Architectonic subdivision of the orbital and medial prefrontal cortex in the macaque monkey , 1994, The Journal of comparative neurology.

[31]  H Asanuma,et al.  Information processing within the motor cortex. II. Intracortical connections between neurons receiving somatosensory cortical input and motor output neurons of the cortex , 1994, The Journal of comparative neurology.

[32]  J DeFelipe,et al.  A study of SMI 32‐stained pyramidal cells, parvalbumin‐immunoreactive chandelier cells, and presumptive thalamocortical axons in the human temproal neocortex , 1994, The Journal of comparative neurology.

[33]  H. Sherk,et al.  A reassessment of the lower visual field map in striate-recipient lateral suprasylvian cortex , 1993, Visual Neuroscience.

[34]  C R Olson,et al.  Posterior cingulate cortex: sensory and oculomotor properties of single neurons in behaving cat. , 1992, Cerebral cortex.

[35]  P. Hof,et al.  Regional distribution of neurofilament and calcium-binding proteins in the cingulate cortex of the macaque monkey. , 1992, Cerebral cortex.

[36]  J. Morrison,et al.  The primary auditory cortex in cetacean and human brain: A comparative analysis of neurofilament protein-containing pyramidal neurons , 1992, Neuroscience Letters.

[37]  C R Olson,et al.  Topographic organization of cortical and subcortical projections to posterior cingulate cortex in the cat: Evidence for somatic, ocular, and complex subregions , 1992, The Journal of comparative neurology.

[38]  S Shipp,et al.  Visuotopic organization of the lateral suprasylvian area and of an adjacent area of the ectosylvian gyrus of cat cortex: A physioligical and connectional study , 1991, Visual Neuroscience.

[39]  G. Orban,et al.  Orientation discrimination in the cat: Its cortical locus. I. Areas 17 and 18 , 1991, The Journal of comparative neurology.

[40]  J. Morrison,et al.  A subpopulation of primate corticocortical neurons is distinguished by somatodendritic distribution of neurofilament protein , 1991, Brain Research.

[41]  J. Bolz,et al.  Morphological types of projection neurons in layer 5 of cat visual cortex , 1990, The Journal of comparative neurology.

[42]  J. Morrison,et al.  Quantitative analysis of a vulnerable subset of pyramidal neurons in Alzheimer's disease: II. Primary and secondary visual cortex , 1990, The Journal of comparative neurology.

[43]  M. Sur,et al.  Monoclonal antibody cat‐301 identifies Y‐cells in the dorsal lateral geniculate nucleus of the cat , 1990, The Journal of comparative neurology.

[44]  D. V. van Essen,et al.  Antibody labeling of functional subdivisions in visual cortex: Cat-301 immunoreactivity in striate and extrastriate cortex of the macaque monkey , 1990, Visual Neuroscience.

[45]  R. Tootell,et al.  Molecular differences among neurons reveal an organization of human visual cortex. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[46]  B. V. Updyke,et al.  Retinotopic organization within the lateral posterior complex of the cat , 1989, The Journal of comparative neurology.

[47]  J. Morrison,et al.  Monoclonal antibody to neurofilament protein (SMI‐32) labels a subpopulation of pyramidal neurons in the human and monkey neocortex , 1989, The Journal of comparative neurology.

[48]  A. Matus Neurofilament protein phosphorylation - where, when and why , 1988, Trends in Neurosciences.

[49]  T. Hicks,et al.  Modality specificity of neuronal responses within the cat's insula. , 1988, Journal of neurophysiology.

[50]  T. Hicks,et al.  Organization and properties of neurons in a visual area within the insular cortex of the cat. , 1988, Journal of neurophysiology.

[51]  L. Otvos,et al.  Identification of the major multiphosphorylation site in mammalian neurofilaments. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[52]  Lingzhi Fan,et al.  The glucose oxidase-DAB-nickel method in peroxidase histochemistry of the nervous system , 1988, Neuroscience Letters.

[53]  E G Jones,et al.  Neuronal populations stained with the monoclonal antibody Cat-301 in the mammalian cerebral cortex and thalamus , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[54]  C. Olson,et al.  Ectosylvian visual area of the cat: Location, retinotopic organization, and connections , 1987, The Journal of comparative neurology.

[55]  D. Whitteridge,et al.  Connections between pyramidal neurons in layer 5 of cat visual cortex (area 17) , 1987, The Journal of comparative neurology.

[56]  C. R. Olson,et al.  Cortical and subcortical afferent connections of a posterior division of feline area 7 (Area 7p) , 1987, The Journal of comparative neurology.

[57]  A. Matus Putting together the neuronal cytoskeleton , 1987, Trends in Neurosciences.

[58]  L C Katz,et al.  Local circuitry of identified projection neurons in cat visual cortex brain slices , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[59]  H. Sherk Location and connections of visual cortical areas in the cat's suprasylvian sulcus , 1986, The Journal of comparative neurology.

[60]  B. V. Updyke,et al.  Retinotopic organization within the cat's posterior suprasylvian sulcus and gyrus , 1986, The Journal of comparative neurology.

[61]  J. Trojanowski,et al.  Expression of neurofilament subunits in neurons of the central and peripheral nervous system: an immunohistochemical study with monoclonal antibodies , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[62]  G. Henry,et al.  Layering in lamina 6 of cat striate cortex , 1986, Brain Research.

[63]  A. Rosenquist,et al.  Corticocortical connections among visual areas in the cat , 1984, The Journal of comparative neurology.

[64]  A. Rosenquist,et al.  Laminar origins of visual corticocortical connections in the cat , 1984, The Journal of comparative neurology.

[65]  E. G. Jones,et al.  Monoclonal antibody that identifies subsets of neurones in the central visual system of monkey and cat , 1984, Nature.

[66]  L. Sternberger,et al.  Monoclonal antibodies distinguish phosphorylated and nonphosphorylated forms of neurofilaments in situ. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[67]  A. Rosenquist,et al.  Connections of the multiple visual cortical areas with the lateral posterior-pulvinar complex and adjacent thalamic nuclei in the cat , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[68]  S. Hockfield,et al.  A surface antigen expressed by a subset of neurons in the vertebrate central nervous system. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[69]  L. Sternberger,et al.  Microheterogeneity ("neurotypy") of neurofilament proteins. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[70]  S. Hockfield,et al.  Monoclonal antibodies distinguish antigenically discrete neuronal types in the vertebrate central nervous system. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[71]  D. Winfield The effect of visual deprivation upon the Meynert cell in the striate cortex of the cat. , 1982, Brain research.

[72]  B. V. Updyke,et al.  Cortical visual areas of the cat project differentially onto the nuclei of the accessory optic system , 1982, Brain Research.

[73]  L. Palmer,et al.  Projections of the pulvinar-lateral posterior complex to visual cortical areas in the cat , 1981, Neuroscience.

[74]  B. V. Updyke,et al.  Projections from visual areas of the middle suprasylvian sulcus onto the lateral posterior complex and adjacent thalamic nuclei in cat , 1981, The Journal of comparative neurology.

[75]  M. J. Friedlander,et al.  Morphology of functionally identified neurons in lateral geniculate nucleus of the cat. , 1981, Journal of neurophysiology.

[76]  L. Palmer,et al.  Retinotopic organization of areas 20 and 21 in the cat , 1980, The Journal of comparative neurology.

[77]  G. Henry,et al.  The afferent connections and laminar distribution of cells in the cat striate cortex , 1979, The Journal of comparative neurology.

[78]  T. Wiesel,et al.  Morphology and intracortical projections of functionally characterised neurones in the cat visual cortex , 1979, Nature.

[79]  L. Palmer,et al.  Retinotopic organization of areas 18 and 19 in the cat , 1979, The Journal of comparative neurology.

[80]  M. Shelanski,et al.  Intermediate filaments in nervous tissues , 1978, The Journal of cell biology.

[81]  L. Palmer,et al.  The retinotopic organization of lateral suprasylvian visual areas in the cat , 1978, The Journal of comparative neurology.

[82]  L. Palmer,et al.  The retinotopic organization of area 17 (striate cortex) in the cat , 1978, The Journal of comparative neurology.

[83]  J. Stone,et al.  Properties of relay cells in cat's lateral geniculate nucleus: a comparison of W-cells with X- and Y-cells. , 1976, Journal of neurophysiology.

[84]  P. D. Spear,et al.  Receptive-field characteristics of single neurons in lateral suprasylvian visual area of the cat. , 1975, Journal of neurophysiology.

[85]  S. Palay,et al.  Meynert cells in the primate visual cortex , 1974, Journal of neurocytology.

[86]  D. Whitteridge,et al.  The visual areas in the splenial sulcus of the cat , 1973, The Journal of physiology.

[87]  R W Guillery,et al.  A study of Golgi preparations from the dorsal lateral geniculate nucleus of the adult cat , 1966, The Journal of comparative neurology.

[88]  J. O'leary,et al.  Structure of the area striata of the cat , 1941 .

[89]  H. Braak,et al.  The deep layers of the human entorhinal cortex have fleecy A beta(17-23) positive deposits of amyloid fragments , 1998 .

[90]  G. Orban,et al.  A cat c-fos specific antibody: Characterization and application in immunocytochemistry on adult cat visual cortex , 1998 .

[91]  G A Orban,et al.  Orientation discrimination in the cat: Its cortical locus II. Extrastriate cortical areas , 1996, The Journal of comparative neurology.

[92]  B R Payne,et al.  Evidence for visual cortical area homologs in cat and macaque monkey. , 1993, Cerebral cortex.

[93]  D. Lewis,et al.  Nonphosphorylated neurofilament protein and calbindin immunoreactivity in layer III pyramidal neurons of human neocortex. , 1992, Cerebral cortex.

[94]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[95]  D. Fitzpatrick,et al.  Distribution and morphology of area 17 neurons that project to the cat's extrastriate cortex , 1991, The Journal of comparative neurology.

[96]  T. Hicks,et al.  Organization of cortical and subcortical projections to the feline insular visual area, IVA. , 1991, Journal fur Hirnforschung.

[97]  W. Welker Why Does Cerebral Cortex Fissure and Fold , 1990 .

[98]  Alan Peters,et al.  Comparative structure and evolution of cerebral cortex , 1990 .

[99]  T. Hicks,et al.  The visual insular cortex of the cat: organization, properties and modality specificity. , 1988, Progress in brain research.

[100]  O D Creutzfeldt,et al.  Anterior ectosylvian visual area (AEV) of the cat: physiological properties. , 1988, Progress in brain research.

[101]  C R Olson,et al.  An outlying visual area in the cerebral cortex of the cat. , 1983, Progress in brain research.

[102]  V. Montero Topography of the cortico-cortical connections from the striate cortex in the cat. , 1981, Brain, behavior and evolution.

[103]  A J Sefton,et al.  Properties of neurons in cat's dorsal lateral geniculate nucleus: A comparison between medial interlaminar and laminated parts of the nucleus , 1979, The Journal of comparative neurology.

[104]  F. Sanides,et al.  Cyto- and myeloarchitecture of the visual cortex of the cat and of the surrounding integration cortices. , 1969, Journal fur Hirnforschung.

[105]  R OTSUKA,et al.  [On the structure and segmentation of the cortical center of vision in the cat]. , 1962, Archiv fur Psychiatrie und Nervenkrankheiten, vereinigt mit Zeitschrift fur die gesamte Neurologie und Psychiatrie.