Nonlinear models of BPSK Costas loop

Rigorous nonlinear analysis of the physical model of Costas loop is very difficult task, so for analysis, simplified mathematical models and numerical simulation are widely used. In the work it is shown that the use of simplified mathematical models, and the application of non rigorous methods of analysis may lead to wrong conclusions concerning the operability of Costas loop.

[1]  Tanmoy Banerjee,et al.  A new dynamic gain control algorithm for speed enhancement of digital-phase locked loops (DPLLs) , 2006, Signal Process..

[2]  Tanmoy Banerjee,et al.  Nonlinear dynamics of a class of symmetric lock range DPLLs with an additional derivative control , 2014, Signal Process..

[3]  Jaijeet S. Roychowdhury,et al.  A fast methodology for first-time-correct design of PLLs using nonlinear phase-domain VCO macromodels , 2006, Asia and South Pacific Conference on Design Automation, 2006..

[4]  Nikolay V. Kuznetsov,et al.  Hidden oscillations in nonlinear control systems , 2011 .

[5]  Michael Olson False-Lock Detection in Costas Demodulators , 1975, IEEE Transactions on Aerospace and Electronic Systems.

[6]  Nikolay V. Kuznetsov,et al.  Nonlinear Analysis of Phase-locked Loop-Based Circuits , 2014 .

[7]  Les Thede,et al.  Practical Analog And Digital Filter Design , 2004 .

[8]  Nikolay V. Kuznetsov,et al.  Hidden oscillations in mathematical model of drilling system actuated by induction motor with a wound rotor , 2014 .

[9]  Dehuai Yang,et al.  Informatics in Control, Automation and Robotics , 2012 .

[10]  G. Leonov,et al.  On stability by the first approximation for discrete systems , 2005, Proceedings. 2005 International Conference Physics and Control, 2005..

[11]  Shilnikov orbits in an autonomous third-order chaotic phase-locked loop , 1998 .

[12]  John P. Costas,et al.  Synchronous Communications , 1956, Proceedings of the IRE.

[13]  Átila Madureira Bueno,et al.  Modeling and Filtering Double-Frequency Jitter in One-Way Master–Slave Chain Networks , 2010, IEEE Transactions on Circuits and Systems I: Regular Papers.

[14]  A. Samoilenko,et al.  Multifrequency Oscillations of Nonlinear Systems , 2004 .

[15]  J. Stensby,et al.  Phase-Locked Loops: Theory and Applications , 1997 .

[16]  Nikolay V. Kuznetsov,et al.  Algorithms for finding hidden oscillations in nonlinear systems. The Aizerman and Kalman conjectures and Chua’s circuits , 2011 .

[17]  Nikolay V. Kuznetsov,et al.  Hidden Oscillations in Aircraft Flight Control System with Input Saturation , 2013, PSYCO.

[18]  Tsung-Yu Chiou,et al.  Nonlinear Phase-Locked Loop design using semidefinite programming , 2008, 2008 16th Mediterranean Conference on Control and Automation.

[19]  J. Salz,et al.  Synchronization Systems in Communication and Control , 1973, IEEE Transactions on Communications.

[20]  Marvin K. Simon The False Lock Performance of Costas Loops with Hard-Limited In-Phase Channel , 1978, IEEE Trans. Commun..

[21]  Jacek Kudrewicz,et al.  Equations of Phase-Locked Loops: Dynamics on Circle, Torus and Cylinder , 2007 .

[22]  Nikolaos I. Margaris Theory of the Non-linear Analog Phase Locked Loop , 2004 .

[23]  E.-H. Horneber,et al.  Behavioral modeling and simulation of phase-locked loops for RF front ends , 2000, Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems (Cat.No.CH37144).

[24]  Luiz Henrique Alves Monteiro,et al.  Considering second-harmonic terms in the operation of the phase detector for second-order phase-locked loop , 2003 .

[25]  William C. Lindsey,et al.  Theory of False Lock in Costas Loops , 1978, IEEE Trans. Commun..

[26]  G. Leonov,et al.  Hidden attractor in smooth Chua systems , 2012 .

[27]  G. Leonov,et al.  Hidden attractors in dynamical systems , 2016 .

[28]  Floyd M. Gardner,et al.  Phaselock techniques , 1984, IEEE Transactions on Systems, Man, and Cybernetics.

[29]  Nikolay V. Kuznetsov,et al.  Simulation of Analog Costas Loop Circuits , 2014, Int. J. Autom. Comput..

[30]  Daniel Y. Abramovitch,et al.  Lyapunov Redesign of Analog Phase-Lock Loops , 1989, 1989 American Control Conference.

[31]  Nikolay V. Kuznetsov,et al.  Time-Varying Linearization and the Perron Effects , 2007, Int. J. Bifurc. Chaos.

[32]  Ulrich Hilleringmann,et al.  Non-linear behaviour of charge-pump phase-locked loops , 2010 .

[33]  Almudena Suarez,et al.  Stability Analysis of Nonlinear Microwave Circuits , 2003 .

[34]  John L. Stensby An exact formula for the half-plane pull-in range of a PLL , 2011, J. Frankl. Inst..

[35]  Elliott D. Kaplan Understanding GPS : principles and applications , 1996 .

[36]  Shyang Chang,et al.  Global bifurcation and chaos from automatic gain control loops , 1993 .

[37]  Kousuke Nakamura,et al.  Receiver for communication with visible light communication system using visible light and method for communicating with visible light , 2011 .

[38]  Roland E. Best Phase-locked loops : design, simulation, and applications ; [including CD with PLL design and simulation software] , 2007 .

[39]  Tsutomu Yoshimura,et al.  Analysis of Pull-in Range Limit by Charge Pump Mismatch in a Linear Phase-Locked Loop , 2013, IEEE Transactions on Circuits and Systems I: Regular Papers.

[40]  Nikolay V. Kuznetsov,et al.  Analytical-numerical method for attractor localization of generalized Chua's system , 2010, PSYCO.

[41]  K. Taniguchi,et al.  Intermittent chaos in a mutually coupled PLL's system , 1998 .

[42]  William H. Tranter,et al.  Basic Simulation Models of Phase Tracking Devices Using MATLAB , 2010, Basic Simulation Models of Phase Tracking Devices Using MATLAB.

[43]  D.Y. Abramovitch,et al.  Efficient and flexible simulation of phase locked loops, part I: Simulator design , 2008, 2008 American Control Conference.

[44]  Carmen Chicone,et al.  Phase-Locked Loops, Demodulation, and Averaging Approximation Time-Scale Extensions , 2013, SIAM J. Appl. Dyn. Syst..

[45]  Nikolay V. Kuznetsov,et al.  Hidden attractors in Dynamical Systems. From Hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman Problems to Hidden Chaotic Attractor in Chua Circuits , 2013, Int. J. Bifurc. Chaos.

[46]  J. Gillis,et al.  Asymptotic Methods in the Theory of Non‐Linear Oscillations , 1963 .

[47]  F. Verhulst,et al.  Averaging Methods in Nonlinear Dynamical Systems , 1985 .

[48]  Nicolai Minorsky,et al.  Introduction to non-linear mechanics : topological methods, analytical methods, nonlinear resonance, relaxation oscillations , 1947 .

[49]  F. Ramirez,et al.  Stability and Bifurcation Analysis of Self-Oscillating Quasi-Periodic Regimes , 2012, IEEE Transactions on Microwave Theory and Techniques.

[50]  D. Abramovitch Efficient and flexible simulation of phase locked loops, part II: Post processing and a design example , 2008, 2008 American Control Conference.

[51]  Ulrich L. Rohde,et al.  Microwave Circuit Design Using Linear and Nonlinear Techniques: Vendelin/Microwave Circuit Design Using Linear and Nonlinear Techniques , 1990 .

[52]  N. E. Wu Analog phaselock loop design using Popov criterion , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).