Summing over trajectories of stochastic dynamics with multiplicative noise.

We demonstrate that previous path integral formulations for the general stochastic interpretation generate incomplete results exemplified by the geometric Brownian motion. We thus develop a novel path integral formulation for the overdamped Langevin equation with multiplicative noise. The present path integral leads to the corresponding Fokker-Planck equation, and naturally generates a normalized transition probability in examples. Our result solves the inconsistency of the previous path integral formulations for the general stochastic interpretation, and can have wide applications in chemical and physical stochastic processes.

[1]  J. Elgin The Fokker-Planck Equation: Methods of Solution and Applications , 1984 .

[2]  Nonequilibrium work relation beyond the Boltzmann-Gibbs distribution. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Evans,et al.  Probability of second law violations in shearing steady states. , 1993, Physical review letters.

[4]  E. Lutz,et al.  Quantum fluctuation theorems in the strong damping limit , 2009, 0902.1858.

[5]  A. B. Adib,et al.  Stochastic actions for diffusive dynamics: reweighting, sampling, and minimization. , 2007, The journal of physical chemistry. B.

[6]  Erkang Wang,et al.  Dominant kinetic paths on biomolecular binding-folding energy landscape. , 2006, Physical review letters.

[7]  H. Orland,et al.  Dominant pathways in protein folding. , 2005, Physical review letters.

[8]  B. Cherayil,et al.  Exact path-integral evaluation of the heat distribution function of a trapped brownian oscillator. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  P. McClintock,et al.  Observation of a noise-induced phase transition with an analog simulator , 1983 .

[10]  Hao Ge,et al.  Generalized Jarzynski’s Equality of Inhomogeneous Multidimensional Diffusion Processes , 2008, 0904.2253.

[11]  Katharine L. C. Hunt,et al.  Path integral solutions of stochastic equations for nonlinear irreversible processes: The uniqueness of the thermodynamic Lagrangian , 1981 .

[12]  L. Fried,et al.  A path integral approach to molecular thermochemistry , 2003 .

[13]  D. Thouless,et al.  Structure of stochastic dynamics near fixed points. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[14]  C. Wissel,et al.  Manifolds of equivalent path integral solutions of the Fokker-Planck equation , 1979 .

[15]  H. Dekker Functional integration anti the Onsager-Machlup Lagrangian for continuous Markov processes in Riemannian geometries , 1979 .

[16]  Lars Onsager,et al.  Fluctuations and Irreversible Process. II. Systems with Kinetic Energy , 1953 .

[17]  S. Aachen Stochastic Differential Equations An Introduction With Applications , 2016 .

[18]  O. Peters,et al.  Ergodicity breaking in geometric Brownian motion. , 2012, Physical review letters.

[19]  M. Chaichian,et al.  Stochastic processes and quantum mechanics , 2001 .

[20]  Tianqi Chen,et al.  Relation of a New Interpretation of Stochastic Differential Equations to Ito Process , 2011, 1111.2987.

[21]  Jin Wang,et al.  Kinetic paths, time scale, and underlying landscapes: a path integral framework to study global natures of nonequilibrium systems and networks. , 2010, The Journal of chemical physics.

[22]  P. Lancon,et al.  Drift without flux: Brownian walker with a space dependent diffusion coefficient , 2001 .

[23]  Hong Qian,et al.  Fluctuation theorems for a molecular refrigerator. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Paolo Muratore-Ginanneschi On the use of stochastic differential geometry for non-equilibrium thermodynamic modeling and control , 2012, 1210.1133.

[25]  J. Wehr,et al.  Influence of noise on force measurements. , 2010, Physical review letters.

[26]  C. Jarzynski Nonequilibrium Equality for Free Energy Differences , 1996, cond-mat/9610209.

[27]  H. Leschke,et al.  Operator orderings and functional formulations of quantum and stochastic dynamics , 1977 .

[28]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[29]  C. DeWitt-Morette,et al.  Techniques and Applications of Path Integration , 1981 .

[30]  U. Seifert Stochastic thermodynamics, fluctuation theorems and molecular machines , 2012, Reports on progress in physics. Physical Society.

[31]  Ping Ao,et al.  Beyond Itô versus Stratonovich , 2012, 1203.6600.

[32]  C. Gardiner Handbook of Stochastic Methods , 1983 .

[33]  H. Risken Fokker-Planck Equation , 1996 .

[34]  H. Janssen Field-theoretic method applied to critical dynamics , 1979 .

[35]  W. Horsthemke,et al.  Onsager-Machlup Function for one dimensional nonlinear diffusion processes , 1975 .

[36]  T C Lubensky,et al.  State-dependent diffusion: Thermodynamic consistency and its path integral formulation. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  T. Hatano,et al.  Steady-state thermodynamics of Langevin systems. , 2000, Physical review letters.

[38]  G. Crooks Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[39]  P. Ao Emerging of Stochastic Dynamical Equalities and Steady State Thermodynamics from Darwinian Dynamics. , 2008, Communications in theoretical physics.

[40]  Zochil Gonz'alez Arenas,et al.  Hidden symmetries and equilibrium properties of multiplicative white-noise stochastic processes , 2012, 1210.3383.

[41]  A. Jayannavar,et al.  Fluctuation theorems in inhomogeneous media under coarse graining , 2013, 1304.6502.

[42]  Robert Graham,et al.  Path integral formulation of general diffusion processes , 1977 .

[43]  N. G. van Kampen,et al.  Itô versus Stratonovich , 1981 .

[44]  W. G. Wolfer,et al.  Numerical evaluation of path-integral solutions to Fokker-Planck equations. III. Time and functionally dependent coefficients. , 1987, Physical review. A, General physics.

[45]  Zochil Gonz'alez Arenas,et al.  Functional integral approach for multiplicative stochastic processes. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  D M Zuckerman,et al.  Efficient dynamic importance sampling of rare events in one dimension. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  R. Feynman,et al.  Quantum Mechanics and Path Integrals , 1965 .

[48]  Wenqing Hu,et al.  Smoluchowski–Kramers approximation in the case of variable friction , 2011, 1203.0603.

[49]  Detlef Dürr,et al.  The Onsager-Machlup function as Lagrangian for the most probable path of a diffusion process , 1978 .