Extreme value statistics for dynamical systems with noise

We study the distribution of maxima (extreme value statistics) for sequences of observables computed along orbits generated by random transformations. The underlying, deterministic, dynamical system can be regular or chaotic. In the former case, we show that, by perturbing rational or irrational rotations with additive noise, an extreme value law appears, regardless of the intensity of the noise, while unperturbed rotations do not admit such limiting distributions. In the case of deterministic chaotic dynamics, we will consider observables specially designed to study the recurrence properties in the neighbourhood of periodic points. Hence, the exponential limiting law for the distribution of maxima is modified by the presence of the extremal index, a positive parameter not larger than one, whose inverse gives the average size of the clusters of extreme events. The theory predicts that such a parameter is unitary when the system is perturbed randomly. We perform sophisticated numerical tests to assess how strong the impact of noise level is when finite time series are considered. We find agreement with the asymptotic theoretical results but also non-trivial behaviour in the finite range. In particular, our results suggest that, in many applications where finite datasets can be produced or analysed, one must be careful in assuming that the smoothing nature of noise prevails over the underlying deterministic dynamics.

[1]  Valerio Lucarini,et al.  Stochastic Perturbations to Dynamical Systems: A Response Theory Approach , 2011, 1103.0237.

[3]  V. Baladi,et al.  Strong stochastic stability and rate of mixing for unimodal maps , 1996 .

[4]  M. Mackey,et al.  Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics , 1998 .

[5]  Ana Cristina Moreira Freitas,et al.  Hitting time statistics and extreme value theory , 2008, 0804.2887.

[6]  G. Keller Rare events, exponential hitting times and extremal indices via spectral perturbation† , 2012, 1202.3900.

[7]  Malcolm R Leadbetter,et al.  On extreme values in stationary sequences , 1974 .

[8]  Pierre Collet,et al.  Statistics of closest return for some non-uniformly hyperbolic systems , 1999, Ergodic Theory and Dynamical Systems.

[9]  C. Caramanis What is ergodic theory , 1963 .

[10]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[11]  Jorge Milhazes Freitas,et al.  On the link between dependence and independence in extreme value theory for dynamical systems , 2008 .

[12]  Malcolm R Leadbetter,et al.  Extremes and local dependence in stationary sequences , 1983 .

[13]  C. Liverani,et al.  A probabilistic approach to intermittency , 1999, Ergodic Theory and Dynamical Systems.

[14]  S. V. Fomin,et al.  Ergodic Theory , 1982 .

[15]  D. Ruelle Differentiation of SRB States , 1997 .

[16]  Holger Rootzén,et al.  Extremes and Related Properties of Random Sequences and Processes: Springer Series in Statistics , 1983 .

[17]  Giorgio Turchetti,et al.  Numerical Convergence of the Block-Maxima Approach to the Generalized Extreme Value Distribution , 2011, 1103.0889.

[18]  Giorgio Turchetti,et al.  Analysis of Round Off Errors with Reversibility Test as a Dynamical indicator , 2012, Int. J. Bifurc. Chaos.

[19]  V. I. Arnolʹd,et al.  Ergodic problems of classical mechanics , 1968 .

[20]  A. C. Freitas,et al.  The Compound Poisson Limit Ruling Periodic Extreme Behaviour of Non-Uniformly Hyperbolic Dynamics , 2012, 1204.2304.

[21]  M. Mackey,et al.  Noise and statistical periodicity , 1987 .

[22]  P. Zweifel,et al.  Nonlinear Evolution and Chaotic Phenomena , 1988 .

[23]  T. Nowicki,et al.  Wild Cantor attractors exist , 1957 .

[24]  D. Faranda,et al.  Sampling local properties of attractors via Extreme Value Theory , 2014, 1407.0412.

[25]  Ana Cristina Moreira Freitas,et al.  Extreme values for Benedicks–Carleson quadratic maps , 2007, Ergodic Theory and Dynamical Systems.

[26]  Return time statistics via inducing , 2000, Ergodic Theory and Dynamical Systems.

[27]  Valerio Lucarini,et al.  A statistical mechanical approach for the computation of the climatic response to general forcings , 2010, 1008.0340.

[28]  白岩 謙一 Anosov Diffeomorphisms (力学系の総合的研究) , 1973 .

[29]  J. Freitas Extremal behaviour of chaotic dynamics , 2013 .

[30]  Angelo Vulpiani,et al.  Fluctuation-Response Relation and modeling in systems with fast and slow dynamics , 2007, 0711.1064.

[31]  M. R. Leadbetter,et al.  Extremes and Related Properties of Random Sequences and Processes: Springer Series in Statistics , 1983 .

[32]  R. Royall Model robust confidence intervals using maximum likelihood estimators , 1986 .

[33]  M. Hirata,et al.  Poisson law for Axiom A diffeomorphisms , 1993, Ergodic Theory and Dynamical Systems.

[34]  Giorgio Turchetti,et al.  Generalized Extreme Value Distribution parameters as Dynamical indicators of stability , 2011, Int. J. Bifurc. Chaos.

[35]  Valerio Lucarini,et al.  Response Theory for Equilibrium and Non-Equilibrium Statistical Mechanics: Causality and Generalized Kramers-Kronig Relations , 2007, 0710.0958.

[36]  D. Ruelle A review of linear response theory for general differentiable dynamical systems , 2009, 0901.0484.

[37]  Giorgio Turchetti,et al.  Extreme value theory for singular measures. , 2012, Chaos.

[38]  Donald Ervin Knuth,et al.  The Art of Computer Programming, Volume II: Seminumerical Algorithms , 1970 .

[39]  Andrew J. Majda,et al.  Blended response algorithms for linear fluctuation-dissipation for complex nonlinear dynamical systems , 2007 .

[40]  H. Lilliefors On the Kolmogorov-Smirnov Test for Normality with Mean and Variance Unknown , 1967 .

[41]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[42]  L. Young Recurrence times and rates of mixing , 1999 .

[43]  Bernold Fiedler,et al.  Ergodic theory, analysis, and efficient simulation of dynamical systems , 2001 .

[44]  M. Viana,et al.  Random perturbations and statistical properties of Henon-like maps , 2006 .

[45]  Lennart Carleson,et al.  The Dynamics of the Henon Map , 1991 .

[46]  Donald H. Burn The use of resampling for estimating confidence intervals for single site and pooled frequency analysis / Utilisation d'un rééchantillonnage pour l'estimation des intervalles de confiance lors d'analyses fréquentielles mono et multi-site , 2003 .

[47]  Valerio Lucarini,et al.  On using extreme values to detect global stability thresholds in multi-stable systems: The case of transitional plane Couette flow , 2012, 1211.0510.

[48]  Stochastic Perturbations of the Invariant Measure of Some Hyperbolic Dynamical Systems , 1988 .

[49]  M. Pollicott,et al.  Escape rates for Gibbs measures , 2010, Ergodic Theory and Dynamical Systems.

[50]  Huyi Hu,et al.  Decay of correlations for piecewise smooth maps with indifferent fixed points , 2004, Ergodic Theory and Dynamical Systems.

[51]  Y. Pomeau,et al.  Intermittent transition to turbulence in dissipative dynamical systems , 1980 .

[52]  S. Vaienti,et al.  Laws of rare events for deterministic and random dynamical systems , 2012, 1207.5188.

[53]  A. C. Freitas,et al.  The extremal index, hitting time statistics and periodicity , 2010, 1008.1350.

[54]  David Ruelle,et al.  General linear response formula in statistical mechanics, and the fluctuation-dissipation theorem far from equilibrium☆ , 1998 .

[55]  W. Janischewskyj,et al.  Micro-Gap Discharge Phenomena and Television Interference , 1985, IEEE Power Engineering Review.

[56]  R. M. Loynes,et al.  Extreme Values in Uniformly Mixing Stationary Stochastic Processes , 1965 .

[58]  Sharp polynomial estimates for the decay of correlations , 2002 .