Can an individual sequence of zeros and ones be random? Russian Math

CONTENTS Introduction Chapter I. The main notions and facts § 1.1. The notion of randomness depends on a given probability distribution § 1.2. Three faces of randomness: stochasticness, chaoticness, typicalness § 1.3. Typical, chaotic and stochastic sequences: ways to a mathematical definition 1.3.1. Typicalness 1.3.2. Chaoticness 1.3.3. Stochasticness 1.3.4. Comments § 1.4. Typical and chaotic sequences: basic definitions (for the case of the uniform Bernoulli distribution) 1.4.1. Typicalness 1.4.2. Chaoticness Chapter II. Effectively null sets, constructive support, and typical sequences § 2.1. Effectively null sets, computable distributions, and the statement of Martin-Lof's theorem § 2.2. Proof of Martin-Lof's theorem § 2.3. Different versions of the definition of the notion of typicalness 2.3.1. Schorr's definition of typicalness 2.3.2. Solovay's criterion for typicalness 2.3.3. The axiomatic approach to the definition of typicalness Chapter III. Complexity, entropy, and chaotic sequences § 3.1. Computable mappings § 3.2. Kolmogorov's theorem. Monotone entropy § 3.3. Chaotic sequences Chapter IV. What is a random sequence? § 4.1. The proof of the Levin-Schorr theorem for the uniform Bernoulli distribution § 4.2. The case of an arbitrary probability distribution § 4.3. The proofs of the lemmas Chapter V. Probabilistic machines, a priori probability, and randomness § 5.1. Probabilistic machines § 5.2. A priori probability § 5.3. A priori probability and entropy § 5.4. A priori probability and randomness Chapter VI. The frequency approach to the definition of a random sequence § 6.1. Von Mises' approach. The Church and Kolmogorov-Loveland definitions § 6.2. Relations between different definitions. Ville's construction. Muchnik's theorem. Lambalgen's example 6.2.1. Relations between different definitions 6.2.2. Ville's example 6.2.3. Muchnik's theorem 6.2.4. Lambalgen's example § 6.3. A game-theoretic criterion for typicalness Addendum. A timid criticism regarding probability theory References

[1]  R. Mises Grundlagen der Wahrscheinlichkeitsrechnung , 1919 .

[2]  R. Mises,et al.  Wahrscheinlichkeit, Statistik und Wahrheit. , 1936 .

[3]  Godfrey H. Hardy,et al.  A mathematician's apology , 1941 .

[4]  A. Church On the concept of a random sequence , 1940 .

[5]  R. V. Mises,et al.  On the Foundations of Probability and Statistics , 1941 .

[6]  G. Pólya Mathematics and Plausible Reasoning , 1958 .

[7]  D. Loveland A New Interpretation of the von Mises' Concept of Random Sequence† , 1966 .

[8]  Per Martin-Löf,et al.  The Definition of Random Sequences , 1966, Inf. Control..

[9]  D. Loveland The Kleene hierarchy classification of recursively random sequences , 1966 .

[10]  Gregory J. Chaitin,et al.  On the Length of Programs for Computing Finite Binary Sequences , 1966, JACM.

[11]  K. Jacobs Turing-Maschinen und zufällige 0–1-Folgen , 1970 .

[12]  L. Levin,et al.  THE COMPLEXITY OF FINITE OBJECTS AND THE DEVELOPMENT OF THE CONCEPTS OF INFORMATION AND RANDOMNESS BY MEANS OF THE THEORY OF ALGORITHMS , 1970 .

[13]  P. Martin-Löf On the Notion of Randomness , 1970 .

[14]  Claus-Peter Schnorr,et al.  Zufälligkeit und Wahrscheinlichkeit - Eine algorithmische Begründung der Wahrscheinlichkeitstheorie , 1971, Lecture Notes in Mathematics.

[15]  Yu. L. Ershov Computable functionals of finite types , 1972 .

[16]  Claus-Peter Schnorr,et al.  Process complexity and effective random tests , 1973 .

[17]  C. Schnorr A Survey of the Theory of Random Sequences , 1977 .

[18]  L. A. Levin A CONCEPT OF INDEPENDENCE WITH APPLICATIONS IN VARIOUS FIELDS OF MATHEMATICS , 1980 .

[19]  A. Kolmogorov On Logical Foundations of Probability Theory , 1983 .

[20]  A. N. Kolmogorov Combinatorial foundations of information theory and the calculus of probabilities , 1983 .

[21]  A. Dawid Calibration-Based Empirical Probability , 1985 .

[22]  Péter Gács,et al.  Every Sequence Is Reducible to a Random One , 1986, Inf. Control..

[23]  V. Vovk On the concept of the Bernoulli property , 1986 .

[24]  G. Chaitin Incompleteness theorems for random reals , 1987 .

[25]  Michiel van Lambalgen,et al.  Von Mises' Definition of Random Sequences Reconsidered , 1987, J. Symb. Log..

[26]  V. V'yugin On the Defect of Randomness of a Finite Object with Respect to Measures with Given Complexity Bounds , 1988 .

[27]  A. Kolmogorov,et al.  ALGORITHMS AND RANDOMNESS , 1988 .

[28]  V. Vovk Kolmogorov-Stout law of the iterated logarithm , 1988 .

[29]  V. Vovk The Law of the Iterated Logarithm for Random Kolmogorov, or Chaotic, Sequences , 1988 .

[30]  Michiel van Lambalgen,et al.  The Axiomatization of Randomness , 1990, J. Symb. Log..