The correlation problem in sensor fusion in a possibilistic framework

This paper addresses the correlation problem which is central in sensor fusion, from the viewpoint of possibility theory. This problem aims at separating pieces of information pertaining to different objects and to gather those which are likely to pertain to the same object. We present two different views of the problem, one based on similarity relations, while the other discusses the problem in a logical framework. © 2001 John Wiley & Sons, Inc.

[1]  Didier Dubois,et al.  From Semantic to Syntactic Approaches to Information Combination in Possibilistic Logic , 1998 .

[2]  Didier Dubois,et al.  Some Syntactic Approaches to the Handling of Inconsistent Knowledge Bases: A Comparative Study Part 1: The Flat Case , 1997, Stud Logica.

[3]  Henri Prade,et al.  Logical analysis of fuzzy constraint satisfaction problems , 1998, 1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36228).

[4]  Michel Grabisch,et al.  A POSSIBILISTIC FRAMEWORK FOR SINGLE-FAULT CAUSAL DIAGNOSIS UNDER UNCERTAINTY* , 2001 .

[5]  Marc Roubens,et al.  Structure of transitive valued binary relations , 1995 .

[6]  M. Grabisch,et al.  Uncertainty modeling and its linguistic expression in data fusion systems , 1998, 1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36228).

[7]  宮本 定明 Fuzzy sets in information retrieval and cluster analysis , 1990 .

[8]  J. Kacprzyk,et al.  Aggregation and Fusion of Imperfect Information , 2001 .

[9]  Marc Roubens,et al.  Fuzzy Preference Modelling and Multicriteria Decision Support , 1994, Theory and Decision Library.

[10]  Didier Dubois,et al.  Weighted minimum and maximum operations in fuzzy set theory , 1986, Inf. Sci..

[11]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[12]  Didier Dubois,et al.  Automated Reasoning Using Possibilistic Logic: Semantics, Belief Revision, and Variable Certainty Weights , 1994, IEEE Trans. Knowl. Data Eng..

[13]  Johan Schubert,et al.  Cluster-based Specification Techniques in Dempster-Shafer Theory , 1995, ECSQARU.

[14]  Bruno Leclerc,et al.  Caractérisation, construction et dénombrement des ultramétriques supérieures minimales , 1986 .