An experimental investigation of nonlinear vibration and frequency response analysis of cantilever viscoelastic beams
暂无分享,去创建一个
Nader Jalili | S. Nima Mahmoodi | S. E. Khadem | Siamak E. Khadem | N. Jalili | S. N. Mahmoodi | S. Mahmoodi | S. E. Khadem
[1] M M Kamel,et al. Response of parametrically excited one degree of freedom system with non-linear damping and stiffness , 2002 .
[2] Ali H. Nayfeh,et al. Nonlinear Nonplanar Dynamics of Parametrically Excited Cantilever Beams , 1998 .
[3] Nader Jalili,et al. A nonlinear double-winged adaptive neutralizer for optimum structural vibration suppression , 2003 .
[4] M. R. Silva. Non-linear flexural-flexural-torsional-extensional dynamics of beams—I. Formulation , 1988 .
[5] Ali H. Nayfeh,et al. Nonlinear Normal Modes of a Cantilever Beam , 1995 .
[6] M. A. Jalali,et al. Nonlinear Oscillations of Viscoelastic Rectangular Plates , 1999 .
[7] S. E. Khadem,et al. Passive Nonlinear Vibrations of a Directly Excited Nanotube-Reinforced Composite Cantilevered Beam , 2005 .
[8] Hong Hee Yoo,et al. DYNAMIC ANALYSIS OF A ROTATING CANTILEVER BEAM BY USING THE FINITE ELEMENT METHOD , 2002 .
[9] M. R. Silva,et al. Equations for Nonlinear Analysis of 3D Motions of Beams , 1991 .
[10] M. R. Silva,et al. Nonlinear Flexural-Flexural-Torsional Dynamics of Inextensional Beams. I. Equations of Motion , 1978 .
[11] N. Jalili,et al. Determination of Strength and Damping Characteristics of Carbon Nanotube-Epoxy Composites , 2004 .
[12] N. Jalili,et al. Passive vibration damping enhancement using carbon nanotube-epoxy reinforced composites , 2005 .
[13] Christophe Pierre,et al. Normal modes of vibration for non-linear continuous systems , 1994 .
[14] Herbert Shea,et al. Carbon nanotubes: nanomechanics, manipulation, and electronic devices , 1999 .
[15] A. Nayfeh,et al. Applied nonlinear dynamics : analytical, computational, and experimental methods , 1995 .
[16] Nader Jalili,et al. Theoretical development and closed-form solution of nonlinear vibrations of a directly excited nanotube-reinforced composite cantilevered beam , 2006 .
[17] Ali H. Nayfeh,et al. Investigation of subcombination internal resonances in cantilever beams , 1998 .
[18] Vimal Singh,et al. Perturbation methods , 1991 .
[19] Y. A. Amer,et al. Vibration control of a cantilever beam subject to both external and parametric excitation , 2004, Appl. Math. Comput..
[20] Ali H. Nayfeh,et al. On Nonlinear Modes of Continuous Systems , 1994 .
[21] M. R. Silva,et al. Nonlinear Flexural-Flexural-Torsional Dynamics of Inextensional Beams. II. Forced Motions , 1978 .
[22] W. Schultz,et al. Eigenvalue analysis of Timoshenko beams and axisymmetric Mindlin plates by the pseudospectral method , 2004 .
[23] Mousa Rezaee,et al. Analysis of non-linear mode shapes and natural frequencies of continuous damped systems , 2004 .
[24] Ser Tong Quek,et al. Flexural vibration analysis of sandwich beam coupled with piezoelectric actuator , 2000 .
[25] Nader Jalili,et al. Parametric response of cantilever Timoshenko beams with tip mass under harmonic support motion , 1998 .
[26] T. Bailey,et al. Distributed Piezoelectric-Polymer Active Vibration Control of a Cantilever Beam , 1985 .
[27] M. R. Silva,et al. Non-linear flexural-flexural-torsional-extensional dynamics of beams—II. Response analysis , 1988 .
[28] Ali H. Nayfeh,et al. Nonlinear Responses of Buckled Beams to Subharmonic-Resonance Excitations , 2004 .