Microbial production of surfactants and their commercial potential

Many microorganisms, especially bacteria, produce biosurfactants when grown on water-immiscible substrates. Biosurfactants are more effective, selective, environmentally friendly, and stable than many synthetic surfactants. Most common biosurfactants are glycolipids in which carbohydrates are attached to a long-chain aliphatic acid, while others, like lipopeptides, lipoproteins, and heteropolysaccharides, are more complex. Rapid and reliable methods for screening and selection of biosurfactant-producing microorganisms and evaluation of their activity have been developed. Genes involved in rhamnolipid synthesis (rhlAB) and regulation (rhlI and rhlR) in Pseudomonas aeruginosa are characterized, and expression of rhlAB in heterologous hosts is discussed. Genes for surfactin production (sfp, srfA, and comA) in Bacillus spp. are also characterized. Fermentative production of biosurfactants depends primarily on the microbial strain, source of carbon and nitrogen, pH, temperature, and concentration of oxygen and metal ions. Addition of water-immiscible substrates to media and nitrogen and iron limitations in the media result in an overproduction of some biosurfactants. Other important advances are the use of water-soluble substrates and agroindustrial wastes for production, development of continuous recovery processes, and production through biotransformation. Commercialization of biosurfactants in the cosmetic, food, health care, pulp- and paper-processing, coal, ceramic, and metal industries has been proposed. However, the most promising applications are cleaning of oil-contaminated tankers, oil spill management, transportation of heavy crude oil, enhanced oil recovery, recovery of crude oil from sludge, and bioremediation of sites contaminated with hydrocarbons, heavy metals, and other pollutants. Perspectives for future research and applications are also discussed.

[1]  D. Gerson BIOSURFACTANTS PRODUCTION PROPERTIES APPLICATIONS , 1998 .

[2]  F. Lépine,et al.  Biosurfactant production by a soil pseudomonas strain growing on polycyclic aromatic hydrocarbons , 1996, Applied and environmental microbiology.

[3]  K. Timmis,et al.  Effect of heterogeneity of hydrophobic moieties on surface activity of lichenysin A, a lipopeptide biosurfactant from Bacillus licheniformis BAS50 , 1996, Biotechnology and applied biochemistry.

[4]  P. Thonart,et al.  Foaming properties of surfactin, a lipopeptide biosurfactant fromBacillus subtilis , 1996 .

[5]  C. D. Cox,et al.  Surfactant-enhanced bioremediation of PAH- and PCB-contaminated soils , 1995 .

[6]  G. Shreve,et al.  Rhamnolipid biosurfactant enhancement of hexadecane biodegradation by Pseudomonas aeruginosa. , 1995, Molecular marine biology and biotechnology.

[7]  A Fiechter,et al.  Production of Pseudomonas aeruginosa Rhamnolipid Biosurfactants in Heterologous Hosts , 1995, Applied and environmental microbiology.

[8]  G. Bala,et al.  Models for the biological production of glycerol and biosurfactants from potato-processing industry residuals , 1995 .

[9]  E. Ron,et al.  Alasan, a new bioemulsifier from Acinetobacter radioresistens , 1995, Applied and environmental microbiology.

[10]  M. Shoda,et al.  Production of a lipopeptide antibiotic, surfactin, by recombinant Bacillus subtilis in solid state fermentation , 1995, Biotechnology and bioengineering.

[11]  J. Reiser,et al.  Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[12]  S. Roller,et al.  Novel bioemulsifiers from microorganisms for use in foods. , 1995, Journal of biotechnology.

[13]  R. Miller,et al.  Effect of Rhamnolipid (Biosurfactant) Structure on Solubilization and Biodegradation of n-Alkanes , 1995, Applied and environmental microbiology.

[14]  J. Trevors,et al.  Effect of addition of rhamnolipid biosurfactants or rhamnolipid-producing Pseudomonas aeruginosa on phenanthrene mineralization in soil slurries , 1995 .

[15]  E. Vulfson,et al.  Application of enzymes to the synthesis of surfactants. , 1995, Trends in biotechnology.

[16]  K. Timmis,et al.  Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface Bacillus licheniformis BAS50 , 1995, Applied and environmental microbiology.

[17]  R. Miller Biosurfactant-facilitated remediation of metal-contaminated soils. , 1995, Environmental health perspectives.

[18]  W. McCaffrey,et al.  Sophorolipids production by Candida bombicola using self-cycling fermentation , 1995 .

[19]  Ibrahim M. Banat,et al.  Biosurfactants production and possible uses in microbial enhanced oil recovery and oil pollution remediation: a review , 1995 .

[20]  Ibrahim M. Banat,et al.  Characterization of biosurfactants and their use in pollution removal – State of the Art. (Review) , 1995 .

[21]  J. D. Desai,et al.  Biodegradation of slop oil from a petrochemical industry and bioreclamation of slop oil contaminated soil , 1994, World journal of microbiology & biotechnology.

[22]  K.,et al.  Cloning and heterologous expression of a gene encoding an alkane-induced extracellular protein involved in alkane assimilation from Pseudomonas aeruginosa , 1994, Applied and environmental microbiology.

[23]  C. Vipulanandan,et al.  A practical approach to biosurfactant production using nonaseptic fermentation of mixed cultures. , 1994, Biotechnology and bioengineering.

[24]  J. Reiser,et al.  Isolation, characterization, and expression in Escherichia coli of the Pseudomonas aeruginosa rhlAB genes encoding a rhamnosyltransferase involved in rhamnolipid biosurfactant synthesis. , 1994, The Journal of biological chemistry.

[25]  R. Miller,et al.  Effect of a Pseudomonas rhamnolipid biosurfactant on cell hydrophobicity and biodegradation of octadecane , 1994, Applied and environmental microbiology.

[26]  A Fiechter,et al.  Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa , 1994, Journal of bacteriology.

[27]  L. Weber,et al.  Production of sophorose lipid by Candida (Torulopsis) apicola grown on glucose , 1994 .

[28]  E. Harner,et al.  Effectiveness of bioremediation for the Exxon Valdez oil spill , 1994, Nature.

[29]  J. Trevors,et al.  Enhanced removal of selected hydrocarbons from soil by Pseudomonas aeruginosa UG2 biosurfactants and some chemical surfactants , 1994 .

[30]  M. Manresa,et al.  The use of agroindustrial by-products for biosurfactant production , 1994 .

[31]  J. D. Desai,et al.  ADVANCES IN PRODUCTION OF BIOSURFACTANTS AND THEIR COMMERCIAL APPLICATIONS , 1994 .

[32]  P. Bonin,et al.  The potential application of biosurfactants in combatting hydrocarbon pollution in marine environments. , 1994, Research in microbiology.

[33]  P. Linko,et al.  Enzymatic transesterification of rapeseed oil and lauric acid in a continuous reactor , 1993 .

[34]  J. Trevors,et al.  Pseudomonas aeruginosa UG2 rhamnolipid biosurfactants: structural characterization and their use in removing hydrophobic compounds from soil. , 1993, Canadian journal of microbiology.

[35]  E. Rosenberg Exploiting microbial growth on hydrocarbons — new markets , 1993 .

[36]  J. D. Desai,et al.  A rapid and simple screening technique for potential crude oil degrading microorganisms , 1993 .

[37]  T. Nakane,et al.  Surface active properties and antimicrobial activities of mannosylerythritol lipids as biosurfactants produced by Candida antarctica , 1993 .

[38]  M. Nakano,et al.  Mutational analysis of the regulatory region of the srfA operon in Bacillus subtilis , 1993, Journal of bacteriology.

[39]  D. Dubnau,et al.  ComA, a phosphorylated response regulator protein of Bacillus subtilis, binds to the promoter region of srfA , 1993, Journal of bacteriology.

[40]  B. Dixon Oil Eaters in Nature , 1993, Bio/Technology.

[41]  G. Georgiou,et al.  Production and Deactivation of Biosurfactant by Bacillus licheniformis JF‐2 , 1993 .

[42]  C. Akoh,et al.  Lipase-catalyzed modification of phospholipids: Incorporation of n-3 fatty acids into biosurfactants , 1993 .

[43]  Jesus Guinea,et al.  Olive oil mill effluent (OOME). New substrate for biosurfactant production , 1993 .

[44]  R. Miller,et al.  Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant) , 1992, Applied and environmental microbiology.

[45]  A. Fiechter Integrated systems for biosurfactant synthesis , 1992 .

[46]  R. Atlas,et al.  Hydrocarbon Biodegradation and Oil Spill Bioremediation , 1992 .

[47]  A. Fiechter Biosurfactants: moving towards industrial application. , 1992, Trends in biotechnology.

[48]  G. Georgiou,et al.  Surface–Active Compounds from Microorganisms , 1992, Bio/Technology.

[49]  Yoichiro Totani,et al.  Preparation of polyunsaturated phospholipids by lipase-catalyzed transesterification , 1991 .

[50]  M. Nakano,et al.  Transcription initiation region of the srfA operon, which is controlled by the comP-comA signal transduction system in Bacillus subtilis , 1991, Journal of bacteriology.

[51]  J. Trevors,et al.  A drop-collapsing test for screening surfactant-producing microorganisms , 1991 .

[52]  J. Vater,et al.  Cell-free biosynthesis of surfactin, a cyclic lipopeptide produced by Bacillus subtilis. , 1991, Biochemistry.

[53]  J. Reiser,et al.  Hydrocarbon assimilation and biosurfactant production in Pseudomonas aeruginosa mutants , 1991, Journal of bacteriology.

[54]  M. Brown,et al.  Biosurfactants for cosmetic applications , 1991, International journal of cosmetic science.

[55]  S. Lang,et al.  Marine Biosurfactants, III. Toxicity Testing with Marine Microorganisms and Comparison with Synthetic Surfactants , 1991, Zeitschrift fur Naturforschung. C, Journal of biosciences.

[56]  V. Wray,et al.  Marine Biosurfactants, I. Screening for Biosurfactants among Crude Oil Degrading Marine Microorganisms from the North Sea , 1991, Zeitschrift fur Naturforschung. C, Journal of biosciences.

[57]  A. Grossman,et al.  srfA is an operon required for surfactin production, competence development, and efficient sporulation in Bacillus subtilis , 1991, Journal of bacteriology.

[58]  B. Greek Sales of Detergents Growing Despite Recession , 1991 .

[59]  R. Horne,et al.  Biosurfactant production and use in oil tank clean-up , 1991, World journal of microbiology & biotechnology.

[60]  I. Banat,et al.  Isolation of biosurfactant‐producing bacteria, product characterization, and evaluation , 1991 .

[61]  T. Yamane,et al.  Further improvements in the yield of monoglycerides during enzymatic glycerolysis of fats and oils , 1991 .

[62]  J D Sheppard,et al.  The effects of a biosurfactant on oxygen transfer in a cyclone column reactor. , 2007, Journal of chemical technology and biotechnology.

[63]  C. Mulligan,et al.  Recovery of biosurfactants by ultrafiltration. , 2007, Journal of chemical technology and biotechnology.

[64]  S. Horowitz,et al.  NOVEL DISPERSANTS OF SILICON CARBIDE AND ALUMINUM NITRIDE , 1990 .

[65]  T. Yamane,et al.  Solid phase enzymatic glycerolysis of beef tallow resulting in a high yield of monoglyceride , 1990 .

[66]  Daniel I. C. Wang,et al.  Mechanisms for biopolymer accumulation in immobilized Acinetobacter calcoaceticus system , 1990, Biotechnology and bioengineering.

[67]  G. Taylor,et al.  Characterisation of Pseudomonas rhamnolipids. , 1990, Biochimica et biophysica acta.

[68]  J. Sjöholm,et al.  Biosurfactant yields and nutrient consumption of Pseudomonas fluorescens 378 studied in a microcomputer controlled multifermentation system , 1990, Biotechnology and bioengineering.

[69]  F. Bryant Improved Method for the Isolation of Biosurfactant Glycolipids from Rhodococcus sp. Strain H13A , 1990, Applied and environmental microbiology.

[70]  S. Harvey,et al.  Enhanced Removal of Exxon Valdez Spilled Oil from Alaskan Gravel by a Microbial Surfactant , 1990, Bio/Technology.

[71]  A. Persson,et al.  Physiological and Morphological Changes Induced by Nutrient Limitation of Pseudomonas fluorescens 378 in Continuous Culture , 1990, Applied and environmental microbiology.

[72]  Bruce F. Greek Detergent Industry Ponders Products for New Decade , 1990 .

[73]  N. Kosaric,et al.  Biosurfactant production from Nocardia SFC-D : biosurfactant production in a nitrogen limited hydrocarbon medium from nocardia SFC-D , 1990 .

[74]  F. Arendt,et al.  Contaminated Soil ’90 , 1990 .

[75]  F. Wagner,et al.  Effect of Microbial Surfactants on Hydrocarbon Mineralization in Different Model Systems of Soil , 1990 .

[76]  C. Ludwig,et al.  Kinetic Studies on the Hydrogen Peroxide-Enhanced In Situ Biodegradation of Hydrocarbons in Water-Saturated Ground Zone , 1990 .

[77]  S. Cameotra,et al.  Purification and characterization of alkane solubilizing factor produced by Pseudomonas PG-1 , 1990 .

[78]  M. Nakano,et al.  Molecular biology of antibiotic production in Bacillus. , 1990, Critical reviews in biotechnology.

[79]  G. Graff,et al.  Acidic Biopolymers as Dispersants for Ceramic Processing , 1990 .

[80]  C. Mulligan,et al.  The influence of phosphate metabolism on biosurfactant production by Pseudomonas aeruginosa , 1989 .

[81]  E. Ron,et al.  A MICROBIAL POLYMER THAT CHANGES THE SURFACE PROPERTIES OF LIMESTONE: EFFECT OF BIODISPERSAN IN GRINDING LIMESTONE AND MAKING PAPER , 1989 .

[82]  C. Mulligan,et al.  Correlation of nitrogen metabolism with biosurfactant production by Pseudomonas aeruginosa , 1989, Applied and environmental microbiology.

[83]  M. Nakano,et al.  Cloning and characterization of srfB, a regulatory gene involved in surfactin production and competence in Bacillus subtilis , 1989, Journal of bacteriology.

[84]  D. Dubnau,et al.  Sequence and transcription mapping of Bacillus subtilis competence genes comB and comA, one of which is related to a family of bacterial regulatory determinants , 1989, Journal of bacteriology.

[85]  M. Rosenberg,et al.  Putative role of a 70 kDa outer-surface protein in promoting cell-surface hydrophobicity of Serratia marcescens RZ. , 1989, Journal of general microbiology.

[86]  N. Kosaric,et al.  Microbial Enhanced Oil Recovery , 1989 .

[87]  R. Tsuchiya,et al.  Extracellular accumulation of mono- and di-succinoyl trehalose lipids by a strain of Rhodococcus erythropolis grown on n-alkanes. , 1989 .

[88]  T. Nakahara,et al.  Factors Affecting the Production of Succinoyl Trehalose Lipids by Rhodococcus erythropolis SD-74 Grown on n-Alkanes , 1989 .

[89]  J. D. Desai,et al.  Hydrocarbon emulsification by Candida tropicalis and Debaryomyces polymorphus. , 1989, Indian journal of experimental biology.

[90]  S. Shimizu,et al.  Production of dihomo-γ-linolenic acid byMortierella alpina 1S-4 , 1989 .

[91]  S. Lang,et al.  Antimicrobial Effects of Biosurfactants , 1989 .

[92]  David G. Cooper,et al.  Effects of oil reservoir conditions on the production of water‐insoluble Levan by Bacillus licheniformis , 1989 .

[93]  M. P. Bosch,et al.  Chemical characterization and physicochemical behavior of biosurfactants , 1989 .

[94]  J. Kurashige,et al.  MODIFICATION OF FATS AND OILS BY LIPASES , 1989 .

[95]  M. Marahiel,et al.  Identification of a genetic locus required for biosynthesis of the lipopeptide antibiotic surfactin in Bacillus subtilis , 1988, Journal of bacteriology.

[96]  Armin Fiechter,et al.  Genetic Construction of Lactose-Utilizing Strains of Pseudomonas Aeruginosa and Their Application in Biosurfactant Production , 1988, Bio/Technology.

[97]  V. Wray,et al.  Microbial production, structure elucidation and bioconversion of sophorose lipids , 1988 .

[98]  T. Matsuyama,et al.  Increased cell surface hydrophobicity of a Serratia marcescens NS 38 mutant lacking wetting activity , 1988, Journal of Bacteriology.

[99]  D. Cooper,et al.  The effect of surfactants on peat dewatering , 1988 .

[100]  D. Cooper,et al.  The mannoprotein of Saccharomyces cerevisiae is an effective bioemulsifier , 1988, Applied and environmental microbiology.

[101]  K. Eckart,et al.  Studies on the biosynthesis of surfactin, a lipopeptide antibiotic from Bacillus subtilis ATCC 21332 , 1988, FEBS letters.

[102]  E. Rosenberg,et al.  Production of Biodispersan by Acinetobacter calcoaceticus A2 , 1988, Applied and environmental microbiology.

[103]  E. Ron,et al.  Purification and Chemical Properties of Acinetobacter calcoaceticus A2 Biodispersan , 1988, Applied and environmental microbiology.

[104]  J. D. Desai,et al.  Emulsifier production by Pseudomonas fluorescens during the growth on hydrocarbons , 1988 .

[105]  T. Yamane Enzyme technology for the lipids industry: An engineering overview , 1987 .

[106]  C. Ratledge Lipid biotechnology: A wonderland for the microbial physiologist , 1987 .

[107]  R. Hommel,et al.  Production of crystalline surface-active glycolipids by a strain of torulopsis apicola , 1987 .

[108]  S. Michaeli,et al.  Involvement of a plasmid in growth on and dispersion of crude oil by Acinetobacter calcoaceticus RA57 , 1987, Applied and environmental microbiology.

[109]  I. Yano,et al.  Direct Colony Thin-Layer Chromatography and Rapid Characterization of Serratia marcescens Mutants Defective in Production of Wetting Agents , 1987, Applied and environmental microbiology.

[110]  D. Cooper,et al.  Surface-Active Agents from Two Bacillus Species , 1987, Applied and environmental microbiology.

[111]  S. Kluge,et al.  Antiphytovirale Aktivität von Rhamnolipid aus Pseudomonas aeruginosa , 1987 .

[112]  A. Klibanov,et al.  Facile enzymatic preparation of monoacylated sugars in pyridine , 1986 .

[113]  D. Gutnick,et al.  Enhanced emulsan production in mutants of Acinetobacter calcoaceticus RAG-1 selected for resistance to cetyltrimethylammonium bromide , 1986, Applied and environmental microbiology.

[114]  O. Käppeli,et al.  Pilot plant production of rhamnolipid biosurfactant by Pseudomonas aeruginosa , 1986, Applied and environmental microbiology.

[115]  C. Mulligan,et al.  Biological additives for improved mechanical dewatering of fuel-grade peat , 1986 .

[116]  R. Hommel,et al.  Extracellular microbial lipids as biosurfactants , 1986 .

[117]  George M. Carman,et al.  Purification and Characterization of Liposan, a Bioemulsifier from Candida lipolytica , 1985, Applied and environmental microbiology.

[118]  A. R. Macrae,et al.  Present and future applications of lipases , 1985 .

[119]  M. McInerney,et al.  Anaerobic Production of a Biosurfactant by Bacillus licheniformis JF-2 , 1985, Applied and environmental microbiology.

[120]  C. Mulligan,et al.  Pressate from Peat Dewatering as a Substrate for Bacterial Growth , 1985, Applied and environmental microbiology.

[121]  H. Iizuka,et al.  Phospholipid Derived from Hydrocarbons by Fungi , 1985 .

[122]  I. Yano,et al.  Wetting agent produced by Serratia marcescens , 1985 .

[123]  A. Chakrabarty,et al.  Genetically-manipulated microorganisms and their products in the oil service industries , 1985 .

[124]  A. Fattom,et al.  Production of emulcyan by Phormidium J‐1: its activity and function , 1985 .

[125]  Christoph Syldatk,et al.  Chemical and Physical Characterization of Four Interfacial-Active Rhamnolipids from Pseudomonas spec. DSM 2874 Grown on n-Alkanes , 1985, Zeitschrift fur Naturforschung. Section C, Biosciences.

[126]  C. Syldatk,et al.  Production of Four Interfacial Active Rhamnolipids from n-Alkanes or Glycerol by Resting Cells of Pseudomonas species DSM 2874 , 1985, Zeitschrift fur Naturforschung. Section C, Biosciences.

[127]  D. Gutnick,et al.  Tolerance of Acinetobacter calcoaceticus RAG-1 to the cationic surfactant cetyltrimethylammonium bromide: role of the bioemulsifier emulsan , 1985, Applied and environmental microbiology.

[128]  J. Schilling,et al.  Isolation and characterization of the human pulmonary surfactant apoprotein gene , 1985, Nature.

[129]  H. Seino,et al.  Enzymatic synthesis of carbohydrate esters of fatty acid (I) esterification of sucrose, glucose, fructose and sorbitol , 1984 .

[130]  G M Carman,et al.  Isolation of a bioemulsifier from Candida lipolytica , 1984, Applied and environmental microbiology.

[131]  V. Wray,et al.  Formation and Identification of Interfacial-Active Glycolipids from Resting Microbial Cells , 1984, Applied and environmental microbiology.

[132]  A Fiechter,et al.  Pseudomonas aeruginosa biosurfactant production in continuous culture with glucose as carbon source , 1984, Applied and Environmental Microbiology.

[133]  S. Neidleman,et al.  Biotechnology and oleochemicals: Changing patterns , 1984 .

[134]  D. Cooper,et al.  Production of a Biosurfactant from Torulopsis bombicola , 1984, Applied and environmental microbiology.

[135]  C. Mulligan,et al.  Selection of microbes producing biosurfactants in media without hydrocarbons , 1984 .

[136]  M. Singer,et al.  A microbial biosurfactant ― physiology, biochemistry, and applications , 1984 .

[137]  D. Cooper,et al.  Torulopsis petrophilum and Surface Activity , 1983, Applied and environmental microbiology.

[138]  Koronelli Tv,et al.  Chemical composition and role of Pseudomonas aeruginosa peptidoglycolipid in hydrocarbon assimilation , 1983 .

[139]  E. Bayer,et al.  Localization of emulsan-like polymers associated with the cell surface of acinetobacter calcoaceticus , 1983, Journal of bacteriology.

[140]  J. N. Baruah,et al.  Isolation and functional characterization of hydrocarbon emulsifying and solubilizing factors produced by a Pseudomonas species , 1983, Biotechnology and bioengineering.

[141]  D. Menzie,et al.  A halotolerant, biosurfactant-producing Bacillus species potentially useful for enhanced oil recovery , 1983 .

[142]  H. Bock,et al.  Chemical and Physical Characterization of Interfacial-Active Lipids from Rhodococcus erythropolis Grown on n-Alkanes , 1982, Applied and environmental microbiology.

[143]  E. Rosenberg,et al.  Emulsan production by Acinetobacter calcoaceticus in the presence of chloramphenicol , 1982, Journal of bacteriology.

[144]  E. Rosenberg,et al.  Emulsan in Acinetobacter calcoaceticus RAG-1: Distribution of Cell-Free and Cell-Associated Cross-Reacting Material , 1982, Applied and environmental microbiology.

[145]  S. Ito,et al.  Sophorolipids from Torulopsis bombicola: possible relation to alkane uptake , 1982, Applied and environmental microbiology.

[146]  T. Hirayama,et al.  Novel methyl rhamnolipids from Pseudomonas aeruginosa , 1982 .

[147]  E. Rosenberg,et al.  Properties of hydrocarbon‐in‐water emulsions stabilized by Acinetobacter RAG‐1 emulsan , 1982, Biotechnology and bioengineering.

[148]  D. Cooper,et al.  Production of surfactant by Arthrobacter paraffineus ATCC 19558 , 1982, Biotechnology and bioengineering.

[149]  E. Rosenberg,et al.  Role of adherence in growth of Acinetobacter calcoaceticus RAG-1 on hexadecane , 1981, Journal of bacteriology.

[150]  D. Cooper,et al.  Enhanced Production of Surfactin from Bacillus subtilis by Continuous Product Removal and Metal Cation Additions , 1981, Applied and environmental microbiology.

[151]  R. Longay Surface Activity of Mycobacterium and Pseudomonas , 1981 .

[152]  D. Cooper,et al.  Surface-Active Lipids from Nocardia erythropolis Grown on Hydrocarbons , 1981, Applied and environmental microbiology.

[153]  E. Bayer,et al.  EMULSAN PRODUCTION IN ACINETOBACTER RAG-1 , 1981 .

[154]  D. Cooper,et al.  Surface-Active Compounds from Microorganisms , 1980 .

[155]  V. Wray,et al.  Formation, Isolation and Characterization of Trehalose Dimycolates from Rhodococcus erythropolis Grown on n-Alkanes , 1979 .

[156]  O. Käppeli,et al.  Partition of alkane by an extracellular vesicle derived from hexadecane-grown Acinetobacter , 1979, Journal of bacteriology.

[157]  M. Marahiel,et al.  Biological role of gramicidin S in spore functions. Studies on gramicidin-S-negative mutants of Bacillus brevis ATCC9999. , 1979, European journal of biochemistry.

[158]  J. Zajic,et al.  Production and surface‐active properties of microbial surfactants , 1979 .

[159]  J. N. Baruah,et al.  Characterization of hydrocarbon emulsification and solubilization occurring during the growth of Endomycopsis lipolytica on hydrocarbons , 1979 .

[160]  E. Rosenberg,et al.  Emulsifier of Arthrobacter RAG‐1: determination of emulsifier‐bound fatty acids , 1979, FEBS letters.

[161]  R. Light,et al.  Regulation of hydroxydocosanoic acid sophoroside production in Candida bogoriensis by the levels of glucose and yeast extract in the growth medium. , 1979, The Journal of biological chemistry.

[162]  E. Rosenberg,et al.  Emulsifier of Arthrobacter RAG-1: Chemical and Physical Properties , 1979, Applied and environmental microbiology.

[163]  E. Rosenberg,et al.  Emulsifier of Arthrobacter RAG-1: isolation and emulsifying properties , 1979, Applied and environmental microbiology.

[164]  D. Cooper,et al.  Production of surface-active lipids by Corynebacterium lepus , 1979, Applied and environmental microbiology.

[165]  O. Käppeli,et al.  Chemical and structural alterations at the cell surface of Candida tropicalis, induced by hydrocarbon substrate , 1978, Journal of bacteriology.

[166]  C. Asselineau,et al.  Trehalose-containing glycolipids. , 1978, Progress in the chemistry of fats and other lipids.

[167]  O. Käppeli,et al.  Component from the cell surface of the hydrocarbon-utilizing yeast Candida tropicalis with possible relation to hydrocarbon transport , 1977, Journal of bacteriology.

[168]  J. Zajic,et al.  Properties and biodegradation of a bioemulsifier from Corynebacterium hydrocarboclastus , 1977, Biotechnology and bioengineering.

[169]  Koichi Yamada,et al.  Formation of Protein-like Activator for n-Alkane Oxidation and Its Properties , 1977 .

[170]  M. Yamaguchi,et al.  Microbial production of sugar lipids , 1976 .

[171]  K. Kondo,et al.  A New Lysine-containing Lipid Isolated from Agrobacterium tumefaciens , 1976 .

[172]  K. Kondo,et al.  A new lipid; the ornithine and taurine-containing "Cerilipin". , 1976 .

[173]  S. Wilkinson,et al.  Studies of lipopolysaccharides from Pseudomonas aeruginosa. , 1975, European journal of biochemistry.

[174]  Takeo Suzuki,et al.  Sucrose Lipids ofArthrobacteria, CorynebacteriaandNocardiaGrown on Sucrose , 1974 .

[175]  Takeo Suzuki,et al.  Fructose-Lipids of Arthrobacter, Corynebacteria, Nocardia and Mycobacteria Grown on Fructose , 1974 .

[176]  Takeo Suzuki,et al.  Sucrose Lipids of Arthrobacteria, Corynebacteria and Nocardia Grown on Sucrose , 1974 .

[177]  Takeo Suzuki,et al.  Effect of Rhamnolipids on Growth of Pseudomonas aeruginosa Mutant Deficient in n-Paraffin-utilizing Ability , 1972 .

[178]  J. Shively,et al.  The structure of an ornithine-containing lipid from Thiobacillus thiooxidans. , 1972, The Journal of biological chemistry.

[179]  Koichi Yamada,et al.  Protein-like Activator for n-Alkane Oxidation by Pseudomonas aeruginosa S7B1 , 1972 .

[180]  F. Tomita,et al.  Rhamnolipids produced by Pseudomonas aeruginosa grown on n-paraffin (mixture of C 12 , C 13 and C 14 fractions). , 1971, The Journal of antibiotics.

[181]  W. Umbreit,et al.  Extracellular Lipid of Thiobacillus thiooxidans , 1971, Journal of bacteriology.

[182]  Koichi Yamada,et al.  Formation of Rhamnolipid by Pseudomonas aeruginosa and its Function in Hydrocarbon Fermentation , 1971 .

[183]  A. W. Bernheimer,et al.  Nature and properties of a cytolytic agent produced by Bacillus subtilis. , 1970, Journal of general microbiology.

[184]  P. Brennan,et al.  Acylglucoses of the corynebacteria and mycobacteria. , 1970, European journal of biochemistry.

[185]  Lipids of Pseudomonas aeruginosa Cells Grown on Hydrocarbons and on Trypticase Soy Broth , 1969, Journal of bacteriology.

[186]  A. Kakinuma,et al.  Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. , 1968, Biochemical and biophysical research communications.

[187]  J. Spencer,et al.  A new type of macrocyclic lactone from Torulopsis apicola , 1967 .

[188]  J R Edwards,et al.  Structure of a rhamnolipid from Pseudomonas aeruginosa. , 1965, Archives of biochemistry and biophysics.

[189]  T. Suzuki,et al.  THE CHEMICAL STRUCTURE OF POLYMYXIN E: THE IDENTITIES OF POLYMYXIN E1 WITH COLISTIN A AND OF POLYMYXIN E2 WITH COLISTIN B. , 1965, Journal of biochemistry.

[190]  P. Gorin,et al.  THE FERMENTATION OF LONG-CHAIN COMPOUNDS BY TORULOPSIS MAGNOLIAE: I. STRUCTURES OF THE HYDROXY FATTY ACIDS OBTAINED BY THE FERMENTATION OF FATTY ACIDS AND HYDROCARBONS , 1962 .

[191]  M. Karnovsky,et al.  Studies on the biosynthesis of L-rhammose. , 1958, The Journal of biological chemistry.

[192]  R. Haskins,et al.  Biochemistry of the ustilaginales. XII. Characterization of extracellular glycolipids produced by Ustilago sp. , 1956, Canadian journal of biochemistry and physiology.

[193]  M. Karnovsky,et al.  STUDIES ON THE PRODUCTION OF GLYCOLIPIDE BY PSEUDOMONAS AERUGINOSA , 1954, Journal of bacteriology.

[194]  F. G. Jarvis,et al.  A Glyco-lipide Produced by Pseudomonas Aeruginosa , 1949 .

[195]  Sanket J. Joshi,et al.  Biosurfactants , 2022, Biosurfactants for a Sustainable Future.