Abstract We report a design and electroluminescence (EL) investigation of a p-i-n resonant tunneling device based on an Al0.4Ga0.6As/GaAs graded-index waveguide heterostructure. The intrinsic region of the structure consists of a quantum well (QW) surrounded by multiple barrier energy filters providing simultaneous resonant occupation of electron and heavy-hole second excited subbands in the QW. Several peaks are observed in the EL spectra, confirming occupation of the excited subbands. The EL efficiency displays a resonant behavior accompanied by an S-shaped negative differential resistance region in the voltage–current characteristic. Current bistability is demonstrated, leading to bistability in the EL and laser generation spectra.