Superpixel Sampling Networks

Superpixels provide an efficient low/mid-level representation of image data, which greatly reduces the number of image primitives for subsequent vision tasks. Existing superpixel algorithms are not differentiable, making them difficult to integrate into otherwise end-to-end trainable deep neural networks. We develop a new differentiable model for superpixel sampling that leverages deep networks for learning superpixel segmentation. The resulting Superpixel Sampling Network (SSN) is end-to-end trainable, which allows learning task-specific superpixels with flexible loss functions and has fast runtime. Extensive experimental analysis indicates that SSNs not only outperform existing superpixel algorithms on traditional segmentation benchmarks, but can also learn superpixels for other tasks. In addition, SSNs can be easily integrated into downstream deep networks resulting in performance improvements.

[1]  Sabine Süsstrunk,et al.  Superpixels and Polygons Using Simple Non-iterative Clustering , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[2]  Minh N. Do,et al.  Patch Match Filter: Efficient Edge-Aware Filtering Meets Randomized Search for Fast Correspondence Field Estimation , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[3]  Stephen Gould,et al.  Multi-Class Segmentation with Relative Location Prior , 2008, International Journal of Computer Vision.

[4]  Yunsong Li,et al.  Highly accurate optical flow estimation on superpixel tree , 2016, Image Vis. Comput..

[5]  Rama Chellappa,et al.  Entropy rate superpixel segmentation , 2011, CVPR 2011.

[6]  Pascal Fua,et al.  SLIC Superpixels Compared to State-of-the-Art Superpixel Methods , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Ali Farhadi,et al.  Unsupervised Deep Embedding for Clustering Analysis , 2015, ICML.

[8]  Jan Kautz,et al.  Learning Superpixels with Segmentation-Aware Affinity Loss , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[9]  Zhuo Chen,et al.  Deep clustering: Discriminative embeddings for segmentation and separation , 2015, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[10]  Paria Mehrani,et al.  Superpixels and Supervoxels in an Energy Optimization Framework , 2010, ECCV.

[11]  Huchuan Lu,et al.  Saliency Detection via Graph-Based Manifold Ranking , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[12]  Charless C. Fowlkes,et al.  Contour Detection and Hierarchical Image Segmentation , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Ian D. Reid,et al.  gSLICr: SLIC superpixels at over 250Hz , 2015, ArXiv.

[14]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Yong-Jin Liu,et al.  Manifold SLIC: A Fast Method to Compute Content-Sensitive Superpixels , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[16]  Zhengqin Li,et al.  Superpixel segmentation using Linear Spectral Clustering , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[17]  智一 吉田,et al.  Efficient Graph-Based Image Segmentationを用いた圃場図自動作成手法の検討 , 2014 .

[18]  Harri Valpola,et al.  Tagger: Deep Unsupervised Perceptual Grouping , 2016, NIPS.

[19]  Peter V. Gehler,et al.  Superpixel Convolutional Networks Using Bilateral Inceptions , 2015, ECCV.

[20]  Xiangyu Zhu,et al.  Object detection by labeling superpixels , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[21]  Tapani Raiko,et al.  Semi-supervised Learning with Ladder Networks , 2015, NIPS.

[22]  Rynson W. H. Lau,et al.  SuperCNN: A Superpixelwise Convolutional Neural Network for Salient Object Detection , 2015, International Journal of Computer Vision.

[23]  David Cárdenas-Peña,et al.  Waterpixels , 2015, IEEE Transactions on Image Processing.

[24]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[25]  Ming-Yu Liu,et al.  Recursive Context Propagation Network for Semantic Scene Labeling , 2014, NIPS.

[26]  Jürgen Schmidhuber,et al.  Neural Expectation Maximization , 2017, NIPS.

[27]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[28]  Huchuan Lu,et al.  Robust Superpixel Tracking , 2014, IEEE Transactions on Image Processing.

[29]  Yael Pritch,et al.  Saliency filters: Contrast based filtering for salient region detection , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[30]  Nicolas Papadakis,et al.  SCALP: Superpixels with Contour Adherence using Linear Path , 2016, 2016 23rd International Conference on Pattern Recognition (ICPR).

[31]  Sebastian Ramos,et al.  The Cityscapes Dataset for Semantic Urban Scene Understanding , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[32]  Afshin Dehghan,et al.  Improving an Object Detector and Extracting Regions Using Superpixels , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[33]  Sanja Fidler,et al.  Real-time coarse-to-fine topologically preserving segmentation , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[34]  Iasonas Kokkinos,et al.  Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs , 2014, ICLR.

[35]  Luc Van Gool,et al.  SEEDS: Superpixels Extracted Via Energy-Driven Sampling , 2012, International Journal of Computer Vision.

[36]  Michael J. Black,et al.  A Naturalistic Open Source Movie for Optical Flow Evaluation , 2012, ECCV.

[37]  Luc Van Gool,et al.  The Pascal Visual Object Classes Challenge: A Retrospective , 2014, International Journal of Computer Vision.

[38]  Jian Sun,et al.  Saliency Optimization from Robust Background Detection , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[39]  Trevor Darrell,et al.  Caffe: Convolutional Architecture for Fast Feature Embedding , 2014, ACM Multimedia.

[40]  Jitendra Malik,et al.  Learning a classification model for segmentation , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[41]  Luc Van Gool,et al.  Depth SEEDS: Recovering incomplete depth data using superpixels , 2013, 2013 IEEE Workshop on Applications of Computer Vision (WACV).

[42]  Daniel Cremers,et al.  Clustering with Deep Learning: Taxonomy and New Methods , 2018, ArXiv.

[43]  Deqing Sun,et al.  Local Layering for Joint Motion Estimation and Occlusion Detection , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[44]  Sven J. Dickinson,et al.  TurboPixels: Fast Superpixels Using Geometric Flows , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[45]  Raquel Urtasun,et al.  Robust Monocular Epipolar Flow Estimation , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[46]  Bastian Leibe,et al.  Superpixels: An evaluation of the state-of-the-art , 2016, Comput. Vis. Image Underst..