Enhancement in efficiency and optoelectronic quality of perovskite thin films annealed in MACl vapor

We analyzed and compared quantitatively the optoelectronic characteristics of perovskite PV devices with and without annealing the perovskite layer in a methyl ammonium chloride vapor atmosphere (MACl treatment). We found that the MACl treatment resulted in the mitigation of defect states, reduced defect density, improvement in the carrier profile, and passivation of recombination activities, which we infer as natural consequences of significantly improved film quality with better crystallinity and grain morphology of the perovskite layer. MACl-treated devices are more efficient with the best efficiency of ∼15.1% with small standard deviation (std.) (0.50%) and improved stability compared to devices without MACl treatment having the best efficiency of 12.4% with std. of 0.66%.

[1]  Steven S. Hegedus,et al.  Thin‐film solar cells: device measurements and analysis , 2004 .

[2]  T. Minemoto,et al.  Device modeling of perovskite solar cells based on structural similarity with thin film inorganic semiconductor solar cells , 2014 .

[3]  Benjamin Foley,et al.  Temperature dependent energy levels of methylammonium lead iodide perovskite , 2015 .

[4]  Yongfang Li,et al.  Room-temperature mixed-solvent-vapor annealing for high performance perovskite solar cells , 2016 .

[5]  Qi Chen,et al.  The identification and characterization of defect states in hybrid organic-inorganic perovskite photovoltaics. , 2015, Physical chemistry chemical physics : PCCP.

[6]  Peng Gao,et al.  Effect of Annealing Temperature on Film Morphology of Organic–Inorganic Hybrid Pervoskite Solid‐State Solar Cells , 2014 .

[7]  A. Bera,et al.  Temperature-dependent excitonic photoluminescence of hybrid organometal halide perovskite films. , 2014, Physical chemistry chemical physics : PCCP.

[8]  Nakita K. Noel,et al.  Anomalous Hysteresis in Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[9]  Marc Burgelman,et al.  Modeling polycrystalline semiconductor solar cells , 2000 .

[10]  M. Yanagida,et al.  Hysteresis, Stability, and Ion Migration in Lead Halide Perovskite Photovoltaics. , 2016, The journal of physical chemistry letters.

[11]  Christopher J. Tassone,et al.  Chloride in lead chloride-derived organo-metal halides for perovskite-absorber solar cells , 2014 .

[12]  JunHo Kim,et al.  A Nonvacuum Approach for Fabrication of Cu2ZnSnSe4/In2S3 Thin Film Solar Cell and Optoelectronic Characterization , 2015 .

[13]  M. Yanagida,et al.  Novel Surface Passivation Technique for Low-Temperature Solution-Processed Perovskite PV Cells. , 2016, ACS applied materials & interfaces.

[14]  W. Warta,et al.  Solar cell efficiency tables (version 49) , 2017 .

[15]  Takuya Masuda,et al.  Hysteresis-free and highly stable perovskite solar cells produced via a chlorine-mediated interdiffusion method , 2015 .

[16]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[17]  M. Edoff,et al.  Electrical modeling of Cu(In,Ga)Se2 cells with ALD-Zn1−xMgxO buffer layers , 2012 .

[18]  Yi Li,et al.  Numerical simulation: Toward the design of high-efficiency planar perovskite solar cells , 2014 .

[19]  M. Yanagida,et al.  Lead Halide Perovskite Photovoltaic as a Model p-i-n Diode. , 2016, Accounts of chemical research.

[20]  Leone Spiccia,et al.  A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. , 2014, Angewandte Chemie.

[21]  J. Heo,et al.  Highly efficient metal halide substituted CH3NH3I(PbI2)1−X(CuBr2)X planar perovskite solar cells , 2016 .

[22]  T. Ma,et al.  CH3NH3SnxPb(1-x)I3 Perovskite Solar Cells Covering up to 1060 nm. , 2014, The journal of physical chemistry letters.

[23]  Paul L. Burn,et al.  Electro-optics of perovskite solar cells , 2014, Nature Photonics.

[24]  Qi Chen,et al.  Planar heterojunction perovskite solar cells via vapor-assisted solution process. , 2014, Journal of the American Chemical Society.

[25]  Shiro Nishiwaki,et al.  Highly efficient Cu(In,Ga)Se2 solar cells grown on flexible polymer films. , 2011, Nature materials.

[26]  J. Noh,et al.  Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. , 2013, Nano letters.

[27]  Jinsong Huang,et al.  Stabilized Wide Bandgap MAPbBrxI3–x Perovskite by Enhanced Grain Size and Improved Crystallinity , 2015, Advanced science.

[28]  Jinsong Huang,et al.  Solvent Annealing of Perovskite‐Induced Crystal Growth for Photovoltaic‐Device Efficiency Enhancement , 2014, Advanced materials.

[29]  Alan J. Heeger,et al.  Recombination in polymer-fullerene bulk heterojunction solar cells , 2010 .

[30]  Tae-Woo Lee,et al.  Planar CH3NH3PbI3 Perovskite Solar Cells with Constant 17.2% Average Power Conversion Efficiency Irrespective of the Scan Rate , 2015, Advanced materials.

[31]  Sandeep Kumar Pathak,et al.  Ultrasmooth organic–inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells , 2015, Nature Communications.

[32]  Wei Zhang,et al.  Enhanced optoelectronic quality of perovskite thin films with hypophosphorous acid for planar heterojunction solar cells , 2015, Nature Communications.

[33]  Qi Chen,et al.  Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. , 2016, Nature nanotechnology.

[34]  Henry J. Snaith,et al.  Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites , 2015, 1504.07025.

[35]  Mao-Hua Du,et al.  Efficient carrier transport in halide perovskites: theoretical perspectives , 2014 .

[36]  Yang Yang,et al.  Under the spotlight: The organic–inorganic hybrid halide perovskite for optoelectronic applications , 2015 .

[37]  Ashraf Uddin,et al.  Stability of perovskite solar cells , 2016 .

[38]  Kai Zhu,et al.  Room-temperature crystallization of hybrid-perovskite thin films via solvent–solvent extraction for high-performance solar cells , 2015 .

[39]  Yongbo Yuan,et al.  Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells , 2014, Nature Communications.

[40]  A. Jen,et al.  Doping of Fullerenes via Anion‐Induced Electron Transfer and Its Implication for Surfactant Facilitated High Performance Polymer Solar Cells , 2013, Advanced materials.

[41]  J. Noh,et al.  Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors , 2013, Nature Photonics.

[42]  G. Cui,et al.  Methylamine-Gas-Induced Defect-Healing Behavior of CH3NH3PbI3 Thin Films for Perovskite Solar Cells. , 2015, Angewandte Chemie.

[43]  Qi Chen,et al.  Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. , 2014, ACS nano.

[44]  Sergei Tretiak,et al.  High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells , 2016, Nature.

[45]  Anders Hagfeldt,et al.  Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5ee03874j Click here for additional data file. , 2016, Energy & environmental science.

[46]  Chien-Hung Chiang,et al.  Bulk heterojunction perovskite–PCBM solar cells with high fill factor , 2016, Nature Photonics.

[47]  Ni Zhao,et al.  The Role of Chlorine in the Formation Process of “CH3NH3PbI3‐xClx” Perovskite , 2014 .

[48]  Wei Wang,et al.  Device Characteristics of CZTSSe Thin‐Film Solar Cells with 12.6% Efficiency , 2014 .

[49]  A. Jen,et al.  Role of chloride in the morphological evolution of organo-lead halide perovskite thin films. , 2014, ACS nano.

[50]  Karl Leo,et al.  Perovskite photovoltaics: Signs of stability. , 2015, Nature nanotechnology.

[51]  Qingfeng Dong,et al.  Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers , 2014 .

[52]  Alain Goriely,et al.  Morphological Control for High Performance, Solution‐Processed Planar Heterojunction Perovskite Solar Cells , 2014 .

[53]  M. Grätzel,et al.  Thermal Behavior of Methylammonium Lead- trihalide Perovskite Photovoltaic Light Harvesters , 2014 .

[54]  Jin Young Kim,et al.  Mixed solvents for the optimization of morphology in solution-processed, inverted-type perovskite/fullerene hybrid solar cells. , 2014, Nanoscale.

[55]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[56]  Tae Kyu Ahn,et al.  Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency , 2015 .

[57]  Kai Zhu,et al.  Square‐Centimeter Solution‐Processed Planar CH3NH3PbI3 Perovskite Solar Cells with Efficiency Exceeding 15% , 2015, Advanced materials.

[58]  Sang Il Seok,et al.  High-performance photovoltaic perovskite layers fabricated through intramolecular exchange , 2015, Science.

[59]  A. Tiwari,et al.  Low-temperature-processed efficient semi-transparent planar perovskite solar cells for bifacial and tandem applications , 2015, Nature Communications.

[60]  E. Handick,et al.  Observation and Mediation of the Presence of Metallic Lead in Organic-Inorganic Perovskite Films. , 2015, ACS applied materials & interfaces.

[61]  JunHo Kim,et al.  Effects of Ge Alloying on Device Characteristics of Kesterite-Based CZTSSe Thin Film Solar Cells , 2016 .

[62]  Jinsong Huang,et al.  Manipulating Crystallization of Organolead Mixed-Halide Thin Films in Antisolvent Baths for Wide-Bandgap Perovskite Solar Cells. , 2016, ACS applied materials & interfaces.

[63]  Jinsong Huang,et al.  Air‐Stable, Efficient Mixed‐Cation Perovskite Solar Cells with Cu Electrode by Scalable Fabrication of Active Layer , 2016 .

[64]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[65]  M. Yanagida,et al.  Simple characterization of electronic processes in perovskite photovoltaic cells , 2015 .

[66]  Christopher M. Proctor,et al.  Capacitance Spectroscopy for Quantifying Recombination Losses in Nonfullerene Small‐Molecule Bulk Heterojunction Solar Cells , 2016 .

[67]  Su-Huai Wei,et al.  Halide perovskite materials for solar cells: a theoretical review , 2015 .

[68]  Fan Zuo,et al.  Additive Enhanced Crystallization of Solution‐Processed Perovskite for Highly Efficient Planar‐Heterojunction Solar Cells , 2014, Advanced materials.

[69]  Wanli Ma,et al.  Additive to regulate the perovskite crystal film growth in planar heterojunction solar cells , 2015 .

[70]  J. Bisquert,et al.  Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation , 2015 .

[71]  Henry J. Snaith,et al.  Solution Deposition‐Conversion for Planar Heterojunction Mixed Halide Perovskite Solar Cells , 2014 .

[72]  P. Zabierowski,et al.  Capacitance Spectroscopy of Thin‐Film Solar Cells , 2011 .

[73]  Alex K.-Y. Jen,et al.  Recent progress and perspective in solution-processed Interfacial materials for efficient and stable polymer and organometal perovskite solar cells , 2015 .

[74]  O. Gunawan,et al.  Understanding the relationship between Cu_2ZnSn(S,Se)_4 material properties and device performance , 2014 .

[75]  David Cahen,et al.  Elucidating the charge carrier separation and working mechanism of CH3NH3PbI3−xClx perovskite solar cells , 2014, Nature Communications.

[76]  M. Green,et al.  The emergence of perovskite solar cells , 2014, Nature Photonics.

[77]  Alain Goriely,et al.  High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization , 2015, Nature Communications.

[78]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[79]  J. Bisquert,et al.  Light-Induced Space-Charge Accumulation Zone as Photovoltaic Mechanism in Perovskite Solar Cells. , 2016, The journal of physical chemistry letters.

[80]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[81]  A. L. Patterson The Scherrer Formula for X-Ray Particle Size Determination , 1939 .