Towards Computational Models and Applications of Insect Visual Systems for Motion Perception: A Review

Motion perception is a critical capability determining a variety of aspects of insects' life, including avoiding predators, foraging, and so forth. A good number of motion detectors have been identified in the insects' visual pathways. Computational modeling of these motion detectors has not only been providing effective solutions to artificial intelligence, but also benefiting the understanding of complicated biological visual systems. These biological mechanisms through millions of years of evolutionary development will have formed solid modules for constructing dynamic vision systems for future intelligent machines. This article reviews the computational motion perception models originating from biological research on insects' visual systems in the literature. These motion perception models or neural networks consist of the looming-sensitive neuronal models of lobula giant movement detectors (LGMDs) in locusts, the translation-sensitive neural systems of direction-selective neurons (DSNs) in fruit flies, bees, and locusts, and the small-target motion detectors (STMDs) in dragonflies and hoverflies. We also review the applications of these models to robots and vehicles. Through these modeling studies, we summarize the methodologies that generate different direction and size selectivity in motion perception. Finally, we discuss multiple systems integration and hardware realization of these bio-inspired motion perception models.

[1]  Roger C. Hardie,et al.  Feedback Network Controls Photoreceptor Output at the Layer of First Visual Synapses in Drosophila , 2006, The Journal of general physiology.

[2]  Michael H Dickinson,et al.  Collision-avoidance and landing responses are mediated by separate pathways in the fruit fly, Drosophila melanogaster. , 2002, The Journal of experimental biology.

[3]  Nicolas H. Franceschini,et al.  Small Brains, Smart Machines: From Fly Vision to Robot Vision and Back Again , 2014, Proceedings of the IEEE.

[4]  Jigen Peng,et al.  Bio-inspired small target motion detector with a new lateral inhibition mechanism , 2016, 2016 International Joint Conference on Neural Networks (IJCNN).

[5]  Fabrizio Gabbiani,et al.  A Genetic Push to Understand Motion Detection , 2011, Neuron.

[6]  D. Tomsic,et al.  Neuronal correlates of the visually elicited escape response of the crab Chasmagnathus upon seasonal variations, stimuli changes and perceptual alterations , 2008, Journal of Comparative Physiology A.

[7]  F. Ruffier,et al.  Optic flow-based collision-free strategies: From insects to robots. , 2017, Arthropod structure & development.

[8]  Paul D. Barnett,et al.  Insect Detection of Small Targets Moving in Visual Clutter , 2006, PLoS biology.

[9]  N. Franceschini,et al.  Obstacle avoidance and speed control in a mobile vehicle equipped with a compound eye , 1994, Proceedings of the Intelligent Vehicles '94 Symposium.

[10]  Alexander Borst,et al.  Functional Specialization of Parallel Motion Detection Circuits in the Fly , 2013, The Journal of Neuroscience.

[11]  N. Franceschini,et al.  Honeybees change their height to restore their optic flow , 2010, Journal of Comparative Physiology A.

[12]  Shigang Yue,et al.  Collision detection in complex dynamic scenes using an LGMD-based visual neural network with feature enhancement , 2006, IEEE Transactions on Neural Networks.

[13]  Shigang Yue,et al.  Redundant Neural Vision Systems—Competing for Collision Recognition Roles , 2013, IEEE Transactions on Autonomous Mental Development.

[14]  J. Koenderink,et al.  Extraction of optical velocity by use of multi-input Reichardt detectors. , 1994, Journal of the Optical Society of America. A, Optics, image science, and vision.

[15]  B. Hassenstein,et al.  Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus , 1956 .

[16]  H. Bülthoff,et al.  Visuomotor control in flies and behavior - based agents , 2003 .

[17]  Thomas R. Clandinin,et al.  A Class of Visual Neurons with Wide-Field Properties Is Required for Local Motion Detection , 2015, Current Biology.

[18]  Ivan Cohen,et al.  Time-dependent activation of feed-forward inhibition in a looming-sensitive neuron. , 2005, Journal of neurophysiology.

[19]  Rahul Sarpeshkar,et al.  Pulse-Based Analog VLSI Velocity Sensors , 1997 .

[20]  M O'shea,et al.  The neuronal basis of a sensory analyser, the acridid movement detector system. II. response decrement, convergence, and the nature of the excitatory afferents to the fan-like dendrites of the LGMD. , 1976, The Journal of experimental biology.

[21]  F. Ruffier,et al.  Two-Directional 1-g Visual Motion Sensor Inspired by the Fly's Eye , 2013, IEEE Sensors Journal.

[22]  Akira Inoue,et al.  An obstacle avoidance method for two wheeled mobile robot , 2007, 2007 IEEE International Conference on Networking, Sensing and Control.

[23]  Yoshifumi Yamawaki,et al.  Defence behaviours of the praying mantis Tenodera aridifolia in response to looming objects. , 2011, Journal of insect physiology.

[24]  Qinbing Fu,et al.  Mimicking fly motion tracking and fixation behaviors with a hybrid visual neural network , 2017, 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO).

[25]  Paul Y. Oh,et al.  Optic-Flow-Based Collision Avoidance , 2008, IEEE Robotics & Automation Magazine.

[26]  Shigang Yue,et al.  A Collision Detection System for a Mobile Robot Inspired by the Locust Visual System , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[27]  Alexander Borst,et al.  Principles of visual motion detection , 1989, Trends in Neurosciences.

[28]  Ryad Benosman,et al.  Bioinspired event-driven collision avoidance algorithm based on optic flow , 2015, 2015 International Conference on Event-based Control, Communication, and Signal Processing (EBCCSP).

[29]  Bin Hu,et al.  A Rotational Motion Perception Neural Network Based on Asymmetric Spatiotemporal Visual Information Processing , 2017, IEEE Transactions on Neural Networks and Learning Systems.

[30]  Alexander Borst,et al.  ON and OFF pathways in Drosophila motion vision , 2010, Nature.

[31]  D. Tomsic,et al.  Escape behavior and neuronal responses to looming stimuli in the crab Chasmagnathus granulatus (Decapoda: Grapsidae) , 2007, Journal of Experimental Biology.

[32]  Werner Reichardt,et al.  Figure-ground discrimination by relative movement in the visual system of the fly , 2004, Biological Cybernetics.

[33]  Cristina P. Santos,et al.  Modeling disinhibition within a layered structure of the LGMD neuron , 2013, The 2013 International Joint Conference on Neural Networks (IJCNN).

[34]  Jigen Peng,et al.  A Feedback Neural Network for Small Target Motion Detection in Cluttered Backgrounds , 2018, ICANN.

[35]  Fumiya Iida,et al.  Biologically inspired visual odometer for navigation of a flying robot , 2003, Robotics Auton. Syst..

[36]  Stefan Wernitznig,et al.  Synaptic connections of first‐stage visual neurons in the locust Schistocerca gregaria extend evolution of tetrad synapses back 200 million years , 2015, The Journal of comparative neurology.

[37]  F. Ruffier,et al.  OSCAR and OCTAVE : Two bio-inspired visually guided aerial micro-robots , 2003 .

[38]  T. Köhler Bioinspired Motion Detection Based on an FPGA Platform , 2015 .

[39]  Visual Motion: Cellular Implementation of a Hybrid Motion Detector , 2017, Current Biology.

[40]  Jan Faigl,et al.  Neural based obstacle avoidance with CPG controlled hexapod walking robot , 2017, 2017 International Joint Conference on Neural Networks (IJCNN).

[41]  J M Zanker,et al.  Movement-induced motion signal distributions in outdoor scenes , 2005, Network.

[42]  Daniel Matolin,et al.  A QVGA 143 dB Dynamic Range Frame-Free PWM Image Sensor With Lossless Pixel-Level Video Compression and Time-Domain CDS , 2011, IEEE Journal of Solid-State Circuits.

[43]  P. Simmons,et al.  Local circuit for the computation of object approach by an identified visual neuron in the locust , 1998, The Journal of comparative neurology.

[44]  Shigang Yue,et al.  A Bio-inspired Collision Detector for Small Quadcopter , 2018, 2018 International Joint Conference on Neural Networks (IJCNN).

[45]  Michael B. Reiser,et al.  The Emergence of Directional Selectivity in the Visual Motion Pathway of Drosophila , 2017, Neuron.

[46]  Stéphane Viollet,et al.  Characteristics of Three Miniature Bio-inspired Optic Flow Sensors in Natural Environments , 2010, 2010 Fourth International Conference on Sensor Technologies and Applications.

[47]  M. Egelhaaf On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly , 1985 .

[48]  Andrew Hunter,et al.  A modified neural network model for Lobula Giant Movement Detector with additional depth movement feature , 2009, 2009 International Joint Conference on Neural Networks.

[49]  C. Santos,et al.  Computational model of the LGMD neuron for automatic collision detection , 2013, 2013 IEEE 3rd Portuguese Meeting in Bioengineering (ENBENG).

[50]  Thomas Netter,et al.  A robotic aircraft that follows terrain using a neuromorphic eye , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[51]  F. Gabbiani,et al.  Escape Behavior: Linking Neural Computation to Action , 2012, Current Biology.

[52]  Franck Ruffier,et al.  Flying over uneven moving terrain based on optic-flow cues without any need for reference frames or accelerometers , 2015, Bioinspiration & biomimetics.

[53]  G. Leitinger,et al.  Two identified looming detectors in the locust: ubiquitous lateral connections among their inputs contribute to selective responses to looming objects , 2016, Scientific Reports.

[54]  A. Borst,et al.  Neural networks in the cockpit of the fly , 2002, Journal of Comparative Physiology A.

[55]  Shigang Yue,et al.  Reactive direction control for a mobile robot: a locust-like control of escape direction emerges when a bilateral pair of model locust visual neurons are integrated , 2010, Auton. Robots.

[56]  Zhuhong Zhang,et al.  Fly visual system inspired artificial neural network for collision detection , 2015, Neurocomputing.

[57]  Martin Egelhaaf,et al.  Neuronal encoding of object and distance information: a model simulation study on naturalistic optic flow processing , 2011, Front. Neural Circuits.

[58]  Stephen Grossberg,et al.  A neural model of how the brain computes heading from optic flow in realistic scenes , 2009, Cognitive Psychology.

[59]  Jigen Peng,et al.  An improved LPTC neural model for background motion direction estimation , 2017, 2017 Joint IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob).

[60]  Martin Egelhaaf,et al.  Distributed Dendritic Processing Facilitates Object Detection: A Computational Analysis on the Visual System of the Fly , 2008, PloS one.

[61]  Zhihua Wang,et al.  A Model for Detection of Angular Velocity of Image Motion Based on the Temporal Tuning of the Drosophila , 2018, ICANN.

[62]  Damon A. Clark,et al.  Processing properties of ON and OFF pathways for Drosophila motion detection , 2014, Nature.

[63]  A. Warzecha,et al.  Impact and sources of neuronal variability in the fly’s motion vision pathway , 2013, Journal of Physiology-Paris.

[64]  Michael B. Reiser,et al.  Direct Observation of ON and OFF Pathways in the Drosophila Visual System , 2014, Current Biology.

[65]  Michael H Dickinson,et al.  Spatial organization of visuomotor reflexes in Drosophila , 2004, Journal of Experimental Biology.

[66]  Qinbing Fu,et al.  Bio-inspired Collision Detector with Enhanced Selectivity for Ground Robotic Vision System , 2016, BMVC.

[67]  A. Borst,et al.  Internal Structure of the Fly Elementary Motion Detector , 2011, Neuron.

[68]  Antonis A. Argyros,et al.  Biomimetic centering behavior [mobile robots with panoramic sensors] , 2004, IEEE Robotics & Automation Magazine.

[69]  T. Raharijaona,et al.  Toward an insect-inspired event-based autopilot combining both visual and control events , 2017, 2017 3rd International Conference on Event-Based Control, Communication and Signal Processing (EBCCSP).

[70]  Matthias S. Keil,et al.  Dendritic Pooling of Noisy Threshold Processes Can Explain Many Properties of a Collision-Sensitive Visual Neuron , 2015, PLoS Comput. Biol..

[71]  Karin Nordström,et al.  Small object detection neurons in female hoverflies , 2006, Proceedings of the Royal Society B: Biological Sciences.

[72]  Bart R. H. Geurten,et al.  Neural mechanisms underlying target detection in a dragonfly centrifugal neuron , 2007, Journal of Experimental Biology.

[73]  Ben Poole,et al.  Direction Selectivity in Drosophila Emerges from Preferred-Direction Enhancement and Null-Direction Suppression , 2016, The Journal of Neuroscience.

[74]  F C Rind,et al.  Intracellular characterization of neurons in the locust brain signaling impending collision. , 1996, Journal of neurophysiology.

[75]  John R. Gray,et al.  Background visual motion affects responses of an insect motion‐sensitive neuron to objects deviating from a collision course , 2016, Physiological reports.

[76]  Alexander Borst,et al.  Object tracking in motion-blind flies , 2013, Nature Neuroscience.

[77]  Derek Abbott,et al.  New VLSI smart sensor for collision avoidance inspired by insect vision , 1995, Other Conferences.

[78]  Steven Grainger,et al.  Properties of neuronal facilitation that improve target tracking in natural pursuit simulations , 2015, Journal of The Royal Society Interface.

[79]  Chun Zhang,et al.  LGMD and DSNs neural networks integration for collision predication , 2016, 2016 International Joint Conference on Neural Networks (IJCNN).

[80]  Ian A. Meinertzhagen,et al.  Candidate Neural Substrates for Off-Edge Motion Detection in Drosophila , 2014, Current Biology.

[81]  A. Borst,et al.  Seeing Things in Motion: Models, Circuits, and Mechanisms , 2011, Neuron.

[82]  Giacomo Indiveri,et al.  Obstacle avoidance with LGMD neuron: Towards a neuromorphic UAV implementation , 2017, 2017 IEEE International Symposium on Circuits and Systems (ISCAS).

[83]  Shigang Yue,et al.  A Synthetic Vision System Using Directionally Selective Motion Detectors to Recognize Collision , 2007, Artificial Life.

[84]  Martin Egelhaaf,et al.  Binocular Integration of Visual Information: A Model Study on Naturalistic Optic Flow Processing , 2011, Front. Neural Circuits.

[85]  Qinbing Fu,et al.  Collision selective LGMDs neuron models research benefits from a vision-based autonomous micro robot , 2017, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[86]  Cole Gilbert,et al.  Brain Connectivity: Revealing the Fly Visual Motion Circuit , 2013, Current Biology.

[87]  Johannes M. Zanker,et al.  Speed tuning in elementary motion detectors of the correlation type , 1999, Biological Cybernetics.

[88]  David C. O'Carroll,et al.  Retinotopic Organization of Small-Field-Target-Detecting Neurons in the Insect Visual System , 2007, Current Biology.

[89]  N. Franceschini,et al.  From insect vision to robot vision , 1992 .

[90]  A. Borst Fly visual course control: behaviour, algorithms and circuits , 2014, Nature Reviews Neuroscience.

[91]  F. Claire Rind,et al.  IDENTIFICATION OF DIRECTIONALLY SELECTIVE MOTION-DETECTING NEURONES IN THE LOCUST LOBULA AND THEIR SYNAPTIC CONNECTIONS WITH AN IDENTIFIED DESCENDING NEURONE , 1990 .

[92]  Martin Egelhaaf,et al.  On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly , 1985, Biological Cybernetics.

[93]  Gerd Leitinger,et al.  Immunocytochemical evidence that collision sensing neurons in the locust visual system contain acetylcholine , 2000, The Journal of comparative neurology.

[94]  M. Egelhaaf,et al.  Outdoor performance of a motion-sensitive neuron in the blowfly , 2001, Vision Research.

[95]  Karin Nordström,et al.  Neural specializations for small target detection in insects , 2012, Current Opinion in Neurobiology.

[96]  Shigang Yue,et al.  Near range path navigation using LGMD visual neural networks , 2009, 2009 2nd IEEE International Conference on Computer Science and Information Technology.

[97]  M. Egelhaaf,et al.  Processing of figure and background motion in the visual system of the fly , 1989, Biological Cybernetics.

[98]  A. Borst,et al.  Columnar cells necessary for motion responses of wide-field visual interneurons in Drosophila , 2012, Journal of Comparative Physiology.

[99]  S. Peron,et al.  Spike frequency adaptation mediates looming stimulus selectivity in a collision-detecting neuron , 2009, Nature Neuroscience.

[100]  Michael O'Shea,et al.  The anatomy and output connection of a locust visual interneurone; the lobular giant movement detector (LGMD) neurone , 1974, Journal of comparative physiology.

[101]  A. Borst,et al.  A look into the cockpit of the fly: visual orientation, algorithms, and identified neurons , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[102]  Steven Grainger,et al.  Performance of an insect-inspired target tracker in natural conditions , 2017, Bioinspiration & biomimetics.

[103]  Damon A. Clark,et al.  Defining the Computational Structure of the Motion Detector in Drosophila , 2011, Neuron.

[104]  James A. R. Marshall,et al.  A Model for an Angular Velocity-Tuned Motion Detector Accounting for Deviations in the Corridor-Centering Response of the Bee , 2016, PLoS Comput. Biol..

[105]  David C. O'Carroll,et al.  Spatial facilitation by a high-performance dragonfly target-detecting neuron , 2011, Biology Letters.

[106]  Matthias S. Keil,et al.  Emergence of Multiplication in a Biophysical Model of a Wide-Field Visual Neuron for Computing Object Approaches: Dynamics, Peaks, & Fits , 2011, NIPS.

[107]  G. Rubin,et al.  A directional tuning map of Drosophila elementary motion detectors , 2013, Nature.

[108]  Mark A. Frye,et al.  Figure Tracking by Flies Is Supported by Parallel Visual Streams , 2012, Current Biology.

[109]  Hendrik Eckert,et al.  The centrifugal horizontal cells in the lobula plate of the blowfly, Phaenicia sericata , 1983 .

[110]  Patrick A. Shoemaker,et al.  A Model for the Detection of Moving Targets in Visual Clutter Inspired by Insect Physiology , 2008, PloS one.

[111]  Robert M. Olberg,et al.  Object- and self-movement detectors in the ventral nerve cord of the dragonfly , 1981, Journal of comparative physiology.

[112]  Robert M. Olberg,et al.  Identified target-selective visual interneurons descending from the dragonfly brain , 1986, Journal of Comparative Physiology A.

[113]  R eid R. H arrison A Biologically Inspired Analog IC for Visual Collision Detection , .

[114]  Qinbing Fu,et al.  Towards Computational Models of Insect Motion Detectors for Robot Vision , 2018 .

[115]  Steven D. Wiederman,et al.  Biologically Inspired Feature Detection Using Cascaded Correlations of off and on Channels , 2013, J. Artif. Intell. Soft Comput. Res..

[116]  Nicolas H. Franceschini,et al.  Bio-inspired optic flow sensors based on FPGA: Application to Micro-Air-Vehicles , 2007, Microprocess. Microsystems.

[117]  C. W. G Clifford,et al.  Fundamental mechanisms of visual motion detection: models, cells and functions , 2002, Progress in Neurobiology.

[118]  Qinbing Fu,et al.  Modeling direction selective visual neural network with ON and OFF pathways for extracting motion cues from cluttered background , 2017, 2017 International Joint Conference on Neural Networks (IJCNN).

[119]  F Claire Rind,et al.  Motion detectors in the locust visual system: From biology to robot sensors , 2002, Microscopy research and technique.

[120]  Claude Desplan,et al.  The First Steps in Drosophila Motion Detection , 2007, Neuron.

[121]  F. Rind,et al.  Neural network based on the input organization of an identified neuron signaling impending collision. , 1996, Journal of neurophysiology.

[122]  G. Horridge The compound eye of insects , 1977 .

[123]  Holger G. Krapp,et al.  Multiplication and stimulus invariance in a looming-sensitive neuron , 2004, Journal of Physiology-Paris.

[124]  David O'Carroll,et al.  Feature-detecting neurons in dragonflies , 1993, Nature.

[125]  Dario Floreano,et al.  From Wheels to Wings with Evolutionary Spiking Circuits , 2003, EPIA.

[126]  Mark A. Frye,et al.  Higher-Order Figure Discrimination in Fly and Human Vision , 2013, Current Biology.

[127]  Christof Koch,et al.  Multiplicative computation by a looming-sensitive neuron , 2002, Proceedings of the Second Joint 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society] [Engineering in Medicine and Biology.

[128]  Fabrizio Gabbiani,et al.  Precise Subcellular Input Retinotopy and Its Computational Consequences in an Identified Visual Interneuron , 2009, Neuron.

[129]  Andrew Hunter,et al.  A modified model for the Lobula Giant Movement Detector and its FPGA implementation , 2010, Comput. Vis. Image Underst..

[130]  Nicolas Franceschini,et al.  Chromatic Organization and Sexual Dimorphism of the Fly Retinal Mosaic , 1984 .

[131]  Norbert Boeddeker,et al.  A universal strategy for visually guided landing , 2013, Proceedings of the National Academy of Sciences.

[132]  Qinbing Fu,et al.  Shaping the collision selectivity in a looming sensitive neuron model with parallel ON and OFF pathways and spike frequency adaptation , 2018, Neural Networks.

[133]  Karin Nordström,et al.  Local and Large-Range Inhibition in Feature Detection , 2009, The Journal of Neuroscience.

[134]  Stéphane Viollet,et al.  A biomimetic vision-based hovercraft accounts for bees’ complex behaviour in various corridors , 2014, Bioinspiration & biomimetics.

[135]  Martin Buss,et al.  An FPGA implementation of insect-inspired motion detector for high-speed vision systems , 2008, 2008 IEEE International Conference on Robotics and Automation.

[136]  Giacomo Indiveri,et al.  Analog VLSI Model of Locust DCMD Neuron for Computation of Object Approach , 1998 .

[137]  Manfred Hartbauer,et al.  Simplified bionic solutions: a simple bio-inspired vehicle collision detection system , 2017, Bioinspiration & biomimetics.

[138]  B. Webb What does robotics offer animal behaviour? , 2000, Animal Behaviour.

[139]  Mandyam V Srinivasan,et al.  Visual control of navigation in insects and its relevance for robotics , 2011, Current Opinion in Neurobiology.

[140]  J. Zeil Visual homing: an insect perspective , 2012, Current Opinion in Neurobiology.

[141]  B. Kimmerle,et al.  Detection of object motion by a fly neuron during simulated flight , 2000, Journal of Comparative Physiology A.

[142]  David C O'Carroll,et al.  Correlation between OFF and ON Channels Underlies Dark Target Selectivity in an Insect Visual System , 2013, The Journal of Neuroscience.

[143]  B. Kimmerle,et al.  Object detection in the fly during simulated translatory flight , 1997, Journal of Comparative Physiology A.

[144]  Nicolas Franceschini,et al.  Sampling of the Visual Environment by the Compound Eye of the Fly: Fundamentals and Applications , 1975 .

[145]  Ian A. Meinertzhagen,et al.  A common evolutionary origin for the ON- and OFF-edge motion detection pathways of the Drosophila visual system , 2015, Front. Neural Circuits.

[146]  Martin Egelhaaf,et al.  A Bio-inspired Collision Avoidance Model Based on Spatial Information Derived from Motion Detectors Leads to Common Routes , 2015, PLoS Comput. Biol..

[147]  F. Claire Rind,et al.  A DIRECTIONALLY SELECTIVE MOTION-DETECTING NEURONE IN THE BRAIN OF THE LOCUST: PHYSIOLOGICAL AND MORPHOLOGICAL CHARACTERIZATION , 1990 .

[148]  J. V. van Hateren,et al.  Encoding of naturalistic optic flow by a population of blowfly motion-sensitive neurons. , 2006, Journal of neurophysiology.

[149]  Charles M. Higgins Nondirectional motion may underlie insect behavioral dependence on image speed , 2004, Biological Cybernetics.

[150]  Holger G. Krapp,et al.  The many ways of building collision-sensitive neurons , 1999, Trends in Neurosciences.

[151]  Stéphane Viollet,et al.  Bio-inspired optical flow circuits for the visual guidance of micro air vehicles , 2003, Proceedings of the 2003 International Symposium on Circuits and Systems, 2003. ISCAS '03..

[152]  Roger D. Santer,et al.  Escapes with and without preparation: the neuroethology of visual startle in locusts. , 2010, Journal of insect physiology.

[153]  R. Hengstenberg,et al.  Estimation of self-motion by optic flow processing in single visual interneurons , 1996, Nature.

[154]  Zuley Rivera-Alvidrez,et al.  Contrast saturation in a neuronally-based model of elementary motion detection , 2005, Neurocomputing.

[155]  Giacomo Indiveri,et al.  Obstacle Avoidance and Target Acquisition for Robot Navigation Using a Mixed Signal Analog/Digital Neuromorphic Processing System , 2017, Front. Neurorobot..

[156]  F Claire Rind,et al.  Looming detection by identified visual interneurons during larval development of the locust Locusta migratoria , 2013, Journal of Experimental Biology.

[157]  Kazuaki Sawada,et al.  Fast global motion estimation algorithm based on elementary motion detectors , 2002, Proceedings. International Conference on Image Processing.

[158]  Saskia E. J. de Vries,et al.  Loom-Sensitive Neurons Link Computation to Action in the Drosophila Visual System , 2012, Current Biology.

[159]  Julien Serres,et al.  Insect Inspired Autopilots , 2009 .

[160]  A. Borst,et al.  Dendro-Dendritic Interactions between Motion-Sensitive Large-Field Neurons in the Fly , 2002, The Journal of Neuroscience.

[161]  P. Simmons,et al.  Seeing what is coming: building collision-sensitive neurones , 1999, Trends in Neurosciences.

[162]  Fumiya Iida,et al.  Navigation in an autonomous flying robot by using a biologically inspired visual odometer , 2000, SPIE Optics East.

[163]  John R. Gray,et al.  Activity of descending contralateral movement detector neurons and collision avoidance behaviour in response to head-on visual stimuli in locusts , 2001, Journal of Comparative Physiology A.

[164]  P. Simmons,et al.  Orthopteran DCMD neuron: a reevaluation of responses to moving objects. I. Selective responses to approaching objects. , 1992, Journal of neurophysiology.

[165]  F Claire Rind,et al.  A look into the cockpit of the developing locust: Looming detectors and predator avoidance , 2014, Developmental neurobiology.

[166]  Farhad Kamangar,et al.  A neural network for pursuit tracking inspired by the fly visual system , 1995, Neural Networks.

[167]  Richard Stafford,et al.  A bio-inspired visual collision detection mechanism for cars: Combining insect inspired neurons to create a robust system , 2007, Biosyst..

[168]  T. Collett,et al.  Visual control of flight behaviour in the hoverflySyritta pipiens L. , 1975, Journal of comparative physiology.

[169]  F. Claire Rind,et al.  Predator versus Prey: Locust Looming-Detector Neuron and Behavioural Responses to Stimuli Representing Attacking Bird Predators , 2012, PloS one.

[170]  J. Fellous,et al.  Visual Processing in the Central Bee Brain , 2009, The Journal of Neuroscience.

[171]  Shih-Chii Liu,et al.  Motion Detection Circuits for a Time-To-Travel Algorithm , 2007, 2007 IEEE International Symposium on Circuits and Systems.

[172]  Nicolas Franceschini,et al.  A bee in the corridor: centering and wall-following , 2008, Naturwissenschaften.

[173]  Svetha Venkatesh,et al.  Robot navigation inspired by principles of insect vision , 1999, Robotics Auton. Syst..

[174]  Ronald C. Arkin,et al.  Behavioral models of the praying mantis as a basis for robotic behavior , 2000, Robotics Auton. Syst..

[175]  Julien Serres,et al.  Time-of-Travel Methods for Measuring Optical Flow on Board a Micro Flying Robot , 2017, Sensors.

[176]  Paul F. M. J. Verschure,et al.  Collision avoidance using a model of the locust LGMD neuron , 2000, Robotics Auton. Syst..

[177]  Avinash C. Kak,et al.  Vision for Mobile Robot Navigation: A Survey , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[178]  M. Dacke,et al.  Minimum viewing angle for visually guided ground speed control in bumblebees , 2010, Journal of Experimental Biology.

[179]  Mark Frye Elementary motion detectors , 2015, Current Biology.

[180]  N. Franceschini,et al.  A Bio-Inspired Flying Robot Sheds Light on Insect Piloting Abilities , 2007, Current Biology.

[181]  Hongnian Yu,et al.  Energy-Efficient Design and Control of a Vibro-Driven Robot , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[182]  Paul F. M. J. Verschure,et al.  How accurate need sensory coding be for behaviour? Experiments using a mobile robot , 2001, Neurocomputing.

[183]  H. Barlow,et al.  The mechanism of directionally selective units in rabbit's retina. , 1965, The Journal of physiology.

[184]  C.W.G. CLIFFORD,et al.  A Model of Temporal Adaptation in Fly Motion Vision , 1996, Vision Research.

[185]  Franck Ruffier,et al.  Minimalistic optic flow sensors applied to indoor and outdoor visual guidance and odometry on a car-like robot , 2016, Bioinspiration & biomimetics.

[186]  Shigang Yue,et al.  Postsynaptic organisations of directional selective visual neural networks for collision detection , 2013, Neurocomputing.

[187]  Roger D. Santer,et al.  Arousal facilitates collision avoidance mediated by a looming sensitive visual neuron in a flying locust. , 2008, Journal of neurophysiology.

[188]  Johannes M. Zanker,et al.  How does noise influence the estimation of speed? , 1999, Vision Research.

[189]  Patrick Fabiani,et al.  Low-speed optic-flow sensor onboard an unmanned helicopter flying outside over fields , 2013, 2013 IEEE International Conference on Robotics and Automation.

[190]  Farshad Arvin,et al.  Bio-Inspired Embedded Vision System for Autonomous Micro-Robots: The LGMD Case , 2017, IEEE Transactions on Cognitive and Developmental Systems.

[191]  Damián E. Oliva,et al.  Characterization of lobula giant neurons responsive to visual stimuli that elicit escape behaviors in the crab Chasmagnathus. , 2007, Journal of neurophysiology.

[192]  Steven Grainger,et al.  An autonomous robot inspired by insect neurophysiology pursues moving features in natural environments , 2017, Journal of neural engineering.

[193]  R Hengstenberg,et al.  Dendritic structure and receptive-field organization of optic flow processing interneurons in the fly. , 1998, Journal of neurophysiology.

[194]  G. Laurent,et al.  Invariance of Angular Threshold Computation in a Wide-Field Looming-Sensitive Neuron , 2001, The Journal of Neuroscience.

[195]  N. Franceschini,et al.  The VODKA Sensor: A Bio-Inspired Hyperacute Optical Position Sensing Device , 2012, IEEE Sensors Journal.

[196]  Dario Floreano,et al.  Miniature curved artificial compound eyes , 2013, Proceedings of the National Academy of Sciences.

[197]  Richard Stafford,et al.  A bio-inspired visual collision detection mechanism for cars: Optimisation of a model of a locust neuron to a novel environment , 2006, Neurocomputing.

[198]  Louis K. Scheffer,et al.  A visual motion detection circuit suggested by Drosophila connectomics , 2013, Nature.

[199]  Nicolas Franceschini,et al.  Visual Guidance Of A Mobile Robot Equipped With A Network Of Self-Motion Sensors , 1990, Other Conferences.

[200]  Damián Oliva,et al.  Computation of object approach by a system of visual motion-sensitive neurons in the crab Neohelice. , 2014, Journal of neurophysiology.

[201]  C. Koch,et al.  Multiplicative computation in a visual neuron sensitive to looming , 2002, Nature.

[202]  R. Hengstenberg,et al.  Binocular contributions to optic flow processing in the fly visual system. , 2001, Journal of neurophysiology.

[203]  Fabrizio Gabbiani,et al.  Spike-frequency adaptation and intrinsic properties of an identified, looming-sensitive neuron. , 2006, Journal of neurophysiology.

[204]  Derek Abbott,et al.  Man-made velocity estimators based on insect vision , 2005 .

[205]  Nicola Bellotto,et al.  Performance of a Visual Fixation Model in an Autonomous Micro Robot Inspired by Drosophila Physiology , 2018, 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO).

[206]  Mercedes Bengochea,et al.  Organization of columnar inputs in the third optic ganglion of a highly visual crab , 2014, Journal of Physiology-Paris.

[207]  Qinbing Fu,et al.  Modelling LGMD2 visual neuron system , 2015, 2015 IEEE 25th International Workshop on Machine Learning for Signal Processing (MLSP).

[208]  A. Borst,et al.  Fly motion vision. , 2010, Annual review of neuroscience.

[209]  G. Laurent,et al.  Computation of Object Approach by a Wide-Field, Motion-Sensitive Neuron , 1999, The Journal of Neuroscience.

[210]  Nicolas H. Franceschini,et al.  Optic Flow Regulation in Unsteady Environments: A Tethered MAV Achieves Terrain Following and Targeted Landing Over a Moving Platform , 2015, J. Intell. Robotic Syst..

[211]  Alexander Borst,et al.  Complementary mechanisms create direction selectivity in the fly , 2016, eLife.

[212]  N. Franceschini,et al.  Obstacle avoidance in a terrestrial mobile robot provided with a scanning retina , 1996, Proceedings of Conference on Intelligent Vehicles.

[213]  Zhuhong Zhang,et al.  Bio-plausible visual neural network for spatio-temporally spiral motion perception , 2018, Neurocomputing.

[214]  Matthias S. Keil,et al.  A neural model of the locust visual system for detection of object approaches with real-world scenes , 2018, 1801.08108.

[215]  A Borst,et al.  Spatial response properties of contralateral inhibited lobula plate tangential cells in the fly visual system , 1999, The Journal of comparative neurology.

[216]  THOMAS COLLETT,et al.  Visual Neurones for Tracking Moving Targets , 1971, Nature.

[217]  Farshad Arvin,et al.  Development of a bio-inspired vision system for mobile micro-robots , 2014, 4th International Conference on Development and Learning and on Epigenetic Robotics.

[218]  M Egelhaaf,et al.  Neural circuit tuning fly visual neurons to motion of small objects. II. Input organization of inhibitory circuit elements revealed by electrophysiological and optical recording techniques. , 1993, Journal of neurophysiology.

[219]  G. Card,et al.  Escape behaviors in insects , 2012, Current Opinion in Neurobiology.

[220]  Shigang Yue,et al.  Visual motion pattern extraction and fusion for collision detection in complex dynamic scenes , 2006, Comput. Vis. Image Underst..

[221]  Stéphane Viollet,et al.  A fully-autonomous hovercraft inspired by bees: Wall following and speed control in straight and tapered corridors , 2012, 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO).

[222]  Robert A. Harris,et al.  Adaptation and the temporal delay filter of fly motion detectors , 1999, Vision Research.

[223]  Mandyam V Srinivasan,et al.  Honeybees as a model for the study of visually guided flight, navigation, and biologically inspired robotics. , 2011, Physiological reviews.

[224]  Fabrizio Gabbiani,et al.  Role of spike-frequency adaptation in shaping neuronal response to dynamic stimuli , 2009, Biological Cybernetics.

[225]  Michael H. Dickinson,et al.  Flies Evade Looming Targets by Executing Rapid Visually Directed Banked Turns , 2014, Science.

[226]  Hongnian Yu,et al.  Optimized adaptive tracking control for an underactuated vibro-driven capsule system , 2018, Nonlinear Dynamics.

[227]  Nicolas H. Franceschini,et al.  Visually guided micro-aerial vehicle: automatic take off, terrain following, landing and wind reaction , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[228]  F. Claire Rind,et al.  Responses to object approach by a wide field visual neurone, the LGMD2 of the locust: Characterization and image cues , 1997, Journal of Comparative Physiology A.

[229]  A. Borst,et al.  Common circuit design in fly and mammalian motion vision , 2015, Nature Neuroscience.

[230]  Michael S. Drews,et al.  The Temporal Tuning of the Drosophila Motion Detectors Is Determined by the Dynamics of Their Input Elements , 2017, Current Biology.

[231]  Mehmet F. Keleş,et al.  Object-Detecting Neurons in Drosophila , 2017, Current Biology.

[232]  B. Webb,et al.  Can robots make good models of biological behaviour? , 2001, Behavioral and Brain Sciences.

[233]  Charles M. Higgins,et al.  An elaborated model of fly small-target tracking , 2004, Biological Cybernetics.

[234]  Paul F. M. J. Verschure,et al.  Non-Linear Neuronal Responses as an Emergent Property of Afferent Networks: A Case Study of the Locust Lobula Giant Movement Detector , 2010, PLoS Comput. Biol..

[235]  Rind,et al.  The locust DCMD, a movement-detecting neurone tightly tuned to collision trajectories , 1997, The Journal of experimental biology.

[236]  M. Egelhaaf,et al.  Responses of blowfly motion-sensitive neurons to reconstructed optic flow along outdoor flight paths , 2005, Journal of Comparative Physiology A.

[237]  Martin Egelhaaf,et al.  Localized direction selective responses in the dendrites of visual interneurons of the fly , 2010, BMC Biology.

[238]  S. Bermudez i Badia,et al.  A collision avoidance model based on the Lobula giant movement detector (LGMD) neuron of the locust , 2004, 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541).

[239]  Qun Hao,et al.  Review of state-of-the-art artificial compound eye imaging systems , 2019, Bioinspiration & biomimetics.

[240]  N. Strausfeld,et al.  Dissection of the Peripheral Motion Channel in the Visual System of Drosophila melanogaster , 2007, Neuron.

[241]  Donghui Guo,et al.  Dynamic Range Enhance of Visual Sensor Circuits and Application for Multi-object Motion Detection , 2012, 2012 Fifth International Conference on Intelligent Computation Technology and Automation.

[242]  A. Borst,et al.  Neural circuit tuning fly visual interneurons to motion of small objects. I. Dissection of the circuit by pharmacological and photoinactivation techniques. , 1993, Journal of neurophysiology.

[243]  Alexa Riehle,et al.  Directionally Selective Motion Detection by Insect Neurons , 1989 .

[244]  Nicolas H. Franceschini,et al.  Optic flow regulation: the key to aircraft automatic guidance , 2005, Robotics Auton. Syst..

[245]  Andrej Trost,et al.  LGMD-based bio-inspired algorithm for detecting risk of collision of a road vehicle , 2011, 2011 7th International Symposium on Image and Signal Processing and Analysis (ISPA).

[246]  A. J. P. Theuwissen,et al.  Biologically Inspired CMOS Image Sensor for Fast Motion and Polarization Detection , 2013, IEEE Sensors Journal.

[247]  Werner Reichardt,et al.  Evaluation of optical motion information by movement detectors , 1987, Journal of Comparative Physiology A.