Multi-ancestry analysis of gene-sleep interactions in 126,926 individuals identifies multiple novel blood lipid loci that contribute to our understanding of sleep-associated adverse blood lipid profile

Both short and long sleep are associated with an adverse lipid profile, likely through different biological pathways. To provide new insights in the biology of sleep-associated adverse lipid profile, we conducted multi-ancestry genome-wide sleep-SNP interaction analyses on three lipid traits (HDL-c, LDL-c and triglycerides). In the total study sample (discovery + replication) of 126,926 individuals from 5 different ancestry groups, when considering either long or short total sleep time interactions in joint analyses, we identified 49 novel lipid loci, and 10 additional novel lipid loci in a restricted sample of European-ancestry cohorts. In addition, we identified new gene-sleep interactions for known lipid loci such as LPL and PCSK9. The novel gene-sleep interactions had a modest explained variance in lipid levels: most notable, gene-short-sleep interactions explained 4.25% of the variance in triglyceride concentration. Collectively, these findings contribute to our understanding of the biological mechanisms involved in sleep-associated adverse lipid profiles.

Nicholette D. Palmer | P. Elliott | M. Fornage | M. Nalls | C. Gieger | M. Waldenberger | A. Uitterlinden | A. Reiner | A. Peters | R. Mägi | A. Luik | S. Redline | T. Lehtimäki | E. Boerwinkle | C. Rotimi | K. Strauch | P. Munroe | V. Gudnason | C. Bouchard | H. Völzke | A. Zonderman | M. Evans | T. Rice | O. Raitakari | C. Duijn | S. Kardia | T. Meitinger | K. Lohman | Yongmei Liu | S. Kritchevsky | B. Psaty | B. Penninx | A. Kraja | M. Province | A. Metspalu | T. Esko | H. Snieder | K. Taylor | J. Rotter | D. Gottlieb | C. Sitlani | T. Harris | T. Lakka | R. Rauramaa | B. Cade | M. Swertz | Tangchun Wu | X. Shu | Y. Xiang | W. Zheng | D. Rao | D. Becker | L. Bielak | P. Peyser | Han Chen | T. Sofer | K. Rice | Xiaofeng Zhu | J. Shikany | P. Marques‐Vidal | L. Cupples | Xiuqing Guo | H. Grabe | G. Homuth | R. Heinzer | K. North | M. Ikram | S. Rich | N. Amin | G. Eiriksdottir | P. Vollenweider | T. Rankinen | D. Arnett | M. Feitosa | Y. Sung | T. Winkler | N. Franceschini | D. Vojinović | J. Marten | S. Musani | Changwei Li | A. Bentley | Michael R. Brown | K. Schwander | Melissa A. Richard | R. Noordam | H. Aschard | T. Bartz | A. Horimoto | A. Manning | S. Tajuddin | M. Alver | Chuan Gao | M. He | P. Komulainen | B. Kühnel | I. Nolte | S. Weiss | W. Wen | L. Yanek | L. de las Fuentes | E. Evangelou | S. Heikkinen | T. Kilpeläinen | J. Krieger | Jingmin Liu | Y. Milaneschi | J. O'connell | N. Palmer | P. Schreiner | M. Sims | Caizheng Yu | Lifelines Cohort Study | L. Wagenknecht | A. Pereira | W. Gauderman | D. Mook-Kanamori | T. Kelly | C. Kooperberg | A. Morrison | C. Ballantyne | R. Loos | Ching‐Ti Liu | L. Lyytikäinen | S. Gharib | J. Hixson | M. Graff | N. Dimou | S. Aslibekyan | T. Roenneberg | Heming Wang | P. D. de Vries | M. Ikram | J. Haba-Rubio | K. V. Dijk | P. Rensen | E. Lim | L. Martin | D. Heemst | V. Laville | A. van der Spek | Traci M Bartz | N. Biermasz | Jiwon Lee | Ervin F Fox | S. Sidney | Traci M. Bartz | Colleen M. Sitlani | Minjung Kho | Zhe Wang | M. Bos | Marjan Ilkov | C. Adolfo | Robert B Wallance | S. Rich | M. Brown | O. Raitakari | D. Rao | Maris Alver | Xiaofeng Zhu | P. Marques-Vidal | M. Province | Y. Xiang | Michael R. Brown | ER Fox | M. Richard | C. M. Duijn | A. Uitterlinden | T. Harris | Stephen Kritchevsky | B. Psaty | Brigitte Kühnel | J. Krieger | R. Loos | T. B. Harris | Robert B. Wallance | Tuomas O. Kilpeläinen | M. A. Ikram | Stephen B Kritchevsky | Olli T. Raitakari | A. Peters | K. Taylor | R. Wallance | K. Taylor | A. Peters | Tuomas O Kilpeläinen | Michael R. Brown | Jeffery R O'connell | D. Vojinovic

[1]  Andrew D. Johnson,et al.  Edinburgh Research Explorer Genome-wide meta-analysis of 241,258 adults accounting for smoking behaviour identifies novel loci for obesity traits , 2022 .

[2]  U. Hegerl,et al.  Genome‐wide association analysis of actigraphic sleep phenotypes in the LIFE Adult Study , 2016, Journal of sleep research.

[3]  J. Molnar,et al.  Associations Between Sleep Duration and Prevalence of Cardiovascular Events , 2013, Clinical cardiology.

[4]  E. Tobaldini,et al.  Effects of acute and chronic sleep deprivation on cardiovascular regulation. , 2014, Archives italiennes de biologie.

[5]  A. Adler,et al.  Gamma-glutamyl transferase and risk of type II diabetes: an updated systematic review and dose-response meta-analysis. , 2014, Annals of epidemiology.

[6]  Min Zhang,et al.  Short sleep duration predicts risk of metabolic syndrome: a systematic review and meta-analysis. , 2014, Sleep medicine reviews.

[7]  K. Lunetta,et al.  Methods in Genetics and Clinical Interpretation Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Design of Prospective Meta-Analyses of Genome-Wide Association Studies From 5 Cohorts , 2010 .

[8]  John Spertus,et al.  Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study , 2012, The Lancet.

[9]  E. Speliotes,et al.  Genome-wide association analyses identify 39 new susceptibility loci for diverticular disease , 2018, Nature Genetics.

[10]  H. Pijl,et al.  Familial longevity is characterized by high circadian rhythmicity of serum cholesterol in healthy elderly individuals , 2016, Aging cell.

[11]  R. Levy,et al.  Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. , 1972, Clinical chemistry.

[12]  Kurt Hornik,et al.  Support Vector Machines in R , 2006 .

[13]  Eun-Chul Jang,et al.  Association between long working hours and serum gamma-glutamyltransferase levels in female workers: data from the fifth Korean National Health and Nutrition Examination Survey (2010-2011) , 2014, Annals of Occupational and Environmental Medicine.

[14]  Jennifer G. Robinson,et al.  Multi-ancestry genome-wide gene-smoking interaction study of 387,272 individuals identifies new loci associated with serum lipids , 2019, Nature Genetics.

[15]  Hadley Wickham,et al.  ggplot2 - Elegant Graphics for Data Analysis (2nd Edition) , 2017 .

[16]  R. Noordam,et al.  A Diurnal Rhythm in Brown Adipose Tissue Causes Rapid Clearance and Combustion of Plasma Lipids at Wakening. , 2018, Cell reports.

[17]  D. Peet,et al.  Reciprocal regulation of the basic helix–loop–helix/Per–Arnt–Sim partner proteins, Arnt and Arnt2, during neuronal differentiation , 2013, Nucleic acids research.

[18]  M. Kanai,et al.  Genome-wide association study identifies 112 new loci for body mass index in the Japanese population , 2017, Nature Genetics.

[19]  Pasquale Strazzullo,et al.  Sleep duration predicts cardiovascular outcomes: a systematic review and meta-analysis of prospective studies. , 2011, European heart journal.

[20]  Yurii S. Aulchenko,et al.  ProbABEL package for genome-wide association analysis of imputed data , 2010, BMC Bioinformatics.

[21]  E. Ford Habitual Sleep Duration and Predicted 10‐Year Cardiovascular Risk Using the Pooled Cohort Risk Equations Among US Adults , 2014, Journal of the American Heart Association.

[22]  Roland Eils,et al.  circlize implements and enhances circular visualization in R , 2014, Bioinform..

[23]  Atul Malhotra,et al.  A prospective study of sleep duration and coronary heart disease in women. , 2003, Archives of internal medicine.

[24]  Lino Nobili,et al.  Sleep, sleep deprivation, autonomic nervous system and cardiovascular diseases , 2017, Neuroscience & Biobehavioral Reviews.

[25]  Rona Aviram,et al.  The emerging roles of lipids in circadian control. , 2015, Biochimica et biophysica acta.

[26]  Dongfeng Zhang,et al.  Sleep duration and obesity among adults: a meta-analysis of prospective studies. , 2014, Sleep medicine.

[27]  Florian Kronenberg,et al.  EasyStrata: evaluation and visualization of stratified genome-wide association meta-analysis data , 2015, Bioinform..

[28]  Pasquale Strazzullo,et al.  Quantity and Quality of Sleep and Incidence of Type 2 Diabetes , 2009, Diabetes Care.

[29]  J. Danesh,et al.  A comprehensive 1000 Genomes-based genome-wide association meta-analysis of coronary artery disease , 2016 .

[30]  Peter Kraft,et al.  Exploiting Gene-Environment Interaction to Detect Genetic Associations , 2007, Human Heredity.

[31]  Zoltán Kutalik,et al.  Quality control and conduct of genome-wide association meta-analyses , 2014, Nature Protocols.

[32]  A C C Gibbs,et al.  Data Analysis , 2009, Encyclopedia of Database Systems.

[33]  Jennifer G. Robinson,et al.  Association of low-frequency and rare coding-sequence variants with blood lipids and coronary heart disease in 56,000 whites and blacks. , 2014, American journal of human genetics.

[34]  F. Scheer,et al.  Circadian misalignment induces fatty acid metabolism gene profiles and compromises insulin sensitivity in human skeletal muscle , 2018, Proceedings of the National Academy of Sciences.

[35]  Michael Boehnke,et al.  LocusZoom: regional visualization of genome-wide association scan results , 2010, Bioinform..

[36]  B. Angelin,et al.  Bile acid synthesis in humans has a rapid diurnal variation that is asynchronous with cholesterol synthesis. , 2005, Gastroenterology.

[37]  Erdogan Taskesen,et al.  Functional mapping and annotation of genetic associations with FUMA , 2017, Nature Communications.

[38]  Christian Gieger,et al.  Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma , 2011, Nature Genetics.

[39]  C. Möller-Levet,et al.  Effects of insufficient sleep on circadian rhythmicity and expression amplitude of the human blood transcriptome , 2013, Proceedings of the National Academy of Sciences.

[40]  Tanya M. Teslovich,et al.  Common variants associated with plasma triglycerides and risk for coronary artery disease , 2013, Nature Genetics.

[41]  P. Franks,et al.  Multi-ancestry genome-wide smoking interaction study of 387,272 individuals identifies novel lipid loci , 2020 .

[42]  Josée Dupuis,et al.  Meta‐analysis of gene‐environment interaction: joint estimation of SNP and SNP × environment regression coefficients , 2011, Genetic epidemiology.

[43]  Daniel J Buysse,et al.  The Pittsburgh sleep quality index: A new instrument for psychiatric practice and research , 1989, Psychiatry Research.

[44]  B. Cheung,et al.  Gamma-glutamyltransferase and risk of hypertension: a systematic review and dose–response meta-analysis of prospective evidence , 2015, Journal of hypertension.

[45]  M. Kanai,et al.  Genetic analysis of quantitative traits in the Japanese population links cell types to complex human diseases , 2018, Nature Genetics.

[46]  Xiaofeng Zhu,et al.  Genome-wide association analyses of sleep disturbance traits identify new loci and highlight shared genetics with neuropsychiatric and metabolic traits , 2016, Nature Genetics.

[47]  Yurii S. Aulchenko,et al.  BIOINFORMATICS APPLICATIONS NOTE doi:10.1093/bioinformatics/btm108 Genetics and population analysis GenABEL: an R library for genome-wide association analysis , 2022 .

[48]  Zhelong Liu,et al.  Association of sleep duration with apolipoproteins and the apolipoprotein B/A1 ratio: the China health and nutrition survey , 2018, Nutrition & Metabolism.

[49]  E. Mignot,et al.  Genome-wide association study of HLA-DQB1*06:02 negative essential hypersomnia , 2013, PeerJ.

[50]  M. Uchiyama,et al.  Associations of usual sleep duration with serum lipid and lipoprotein levels. , 2008, Sleep.

[51]  Achim Zeileis Object-oriented Computation of Sandwich Estimators , 2006 .

[52]  Tamara S. Roman,et al.  New genetic loci link adipose and insulin biology to body fat distribution , 2014, Nature.

[53]  Thomas J Hoffmann,et al.  A Large Multiethnic Genome-Wide Association Study of Adult Body Mass Index Identifies Novel Loci , 2018, Genetics.

[54]  Y. Benjamini,et al.  Controlling the false discovery rate in behavior genetics research , 2001, Behavioural Brain Research.

[55]  Olle Melander,et al.  Polymorphisms associated with cholesterol and risk of cardiovascular events. , 2008, The New England journal of medicine.

[56]  A. Ananthakrishnan,et al.  Sleep duration affects risk for ulcerative colitis: a prospective cohort study. , 2014, Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association.

[57]  A. Hofman,et al.  Long Sleep Duration is Associated With Serum Cholesterol in the Elderly: The Rotterdam Study , 2008, Psychosomatic medicine.

[58]  G. Kempermann Faculty Opinions recommendation of Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. , 2015 .

[59]  Sanghoon Moon,et al.  Association analyses of East Asian individuals and trans‐ancestry analyses with European individuals reveal new loci associated with cholesterol and triglyceride levels , 2017, Human molecular genetics.

[60]  S. Chastin,et al.  Associations between sleep duration, sedentary time, physical activity, and health indicators among Canadian children and youth using compositional analyses. , 2016, Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme.

[61]  C. Lewis,et al.  Longitudinal associations between objective sleep and lipids: the CARDIA study. , 2013, Sleep.

[62]  F. Hu,et al.  Longer Sleep Duration and Midday Napping Are Associated with a Higher Risk of CHD Incidence in Middle-Aged and Older Chinese: the Dongfeng-Tongji Cohort Study. , 2016, Sleep.

[63]  M. Eriksson,et al.  Circulating Proprotein Convertase Subtilisin Kexin Type 9 Has a Diurnal Rhythm Synchronous With Cholesterol Synthesis and Is Reduced by Fasting in Humans , 2010, Arteriosclerosis, thrombosis, and vascular biology.

[64]  A. E. Sullivan,et al.  Characterization of human variants in obesity-related SIM1 protein identifies a hot-spot for dimerization with the partner protein ARNT2. , 2014, The Biochemical journal.

[65]  E. van Cauter,et al.  Annals of the New York Academy of Sciences Interactions between Sleep, Circadian Function, and Glucose Metabolism: Implications for Risk and Severity of Diabetes , 2022 .

[66]  K. Tsutsumi,et al.  The relationship between lipoprotein lipase activity and respiratory quotient of rats in circadian rhythms. , 2002, Biological & pharmaceutical bulletin.

[67]  Jennifer G. Robinson,et al.  Multiancestry Genome-Wide Association Study of Lipid Levels Incorporating Gene-Alcohol Interactions , 2019 .

[68]  Yun Li,et al.  METAL: fast and efficient meta-analysis of genomewide association scans , 2010, Bioinform..

[69]  A. Pack,et al.  Sleep is not just for the brain: transcriptional responses to sleep in peripheral tissues , 2013, BMC Genomics.

[70]  Søren Højsgaard,et al.  The R Package geepack for Generalized Estimating Equations , 2005 .

[71]  R. Sacco,et al.  Genetic loci for blood lipid levels identified by linkage and association analyses in Caribbean Hispanics[S] , 2011, Journal of Lipid Research.

[72]  Ross M. Fraser,et al.  Genetic studies of body mass index yield new insights for obesity biology , 2015, Nature.

[73]  Susumu Goto,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 2000, Nucleic Acids Res..

[74]  Jennifer G. Robinson,et al.  Multi-ancestry study of blood lipid levels identifies four loci interacting with physical activity , 2019, Nature Communications.

[75]  J. Gooley Circadian regulation of lipid metabolism , 2016, Proceedings of the Nutrition Society.

[76]  Rongzhong Huang,et al.  Gamma-glutamyltransferase and risk of cardiovascular mortality: A dose-response meta-analysis of prospective cohort studies , 2017, PloS one.

[77]  S. Manuck,et al.  Shorter sleep duration is associated with decreased insulin sensitivity in healthy white men. , 2015, Sleep.

[78]  Jun S. Liu,et al.  The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans , 2015, Science.

[79]  Tanya M. Teslovich,et al.  Genetics of Blood Lipids Among ~300,000 Multi-Ethnic Participants of the Million Veteran Program , 2018, Nature Genetics.

[80]  J. A. Lee,et al.  Relation between sleep duration, overweight, and metabolic syndrome in Korean adolescents. , 2014, Nutrition, metabolism, and cardiovascular diseases : NMCD.

[81]  Tanya M. Teslovich,et al.  Biological, Clinical, and Population Relevance of 95 Loci for Blood Lipids , 2010, Nature.

[82]  Xiaofeng Zhu,et al.  VarExp: Estimating variance explained by Genome-Wide GxE summary statistics , 2017, bioRxiv.

[83]  Claude Bouchard,et al.  Genome-wide physical activity interactions in adiposity. A meta-analysis of 200,452 adults , 2017 .

[84]  N. Eriksson,et al.  GWAS of 89,283 individuals identifies genetic variants associated with self-reporting of being a morning person , 2016, Nature Communications.

[85]  Alex P. Reiner,et al.  Mendelian randomization of blood lipids for coronary heart disease , 2014, European heart journal.

[86]  P. Munroe,et al.  Multiancestry Study of Gene–Lifestyle Interactions for Cardiovascular Traits in 610 475 Individuals From 124 Cohorts: Design and Rationale , 2017, Circulation. Cardiovascular genetics.

[87]  F. Rodríguez‐Artalejo,et al.  Sleep duration, general and abdominal obesity, and weight change among the older adult population of Spain. , 2008, The American journal of clinical nutrition.

[88]  T. Giles,et al.  Circadian rhythm of blood pressure and the relation to cardiovascular events , 2006, Journal of hypertension. Supplement : official journal of the International Society of Hypertension.

[89]  Ellen T. Gelfand,et al.  The Genotype-Tissue Expression (GTEx) project , 2013, Nature Genetics.

[90]  R. Noordam,et al.  Associations of sleep duration and quality with serum and hepatic lipids: The Netherlands Epidemiology of Obesity Study , 2018, Journal of sleep research.

[91]  Tanya M. Teslovich,et al.  Discovery and refinement of loci associated with lipid levels , 2013, Nature Genetics.

[92]  E. C. Chua,et al.  Changes in Plasma Lipids during Exposure to Total Sleep Deprivation. , 2015, Sleep.

[93]  A. Pereira,et al.  The role of race and ethnicity in sleep, circadian rhythms and cardiovascular health. , 2017, Sleep medicine reviews.

[94]  J. Manson,et al.  Habitual sleep quality, plasma metabolites and risk of coronary heart disease in post-menopausal women. , 2018, International journal of epidemiology.

[95]  S. Redline,et al.  Sleep duration and biomarkers of inflammation. , 2009, Sleep.

[96]  K. Williams,et al.  Effect of long-term exposure to lower low-density lipoprotein cholesterol beginning early in life on the risk of coronary heart disease: a Mendelian randomization analysis. , 2012, Journal of the American College of Cardiology.

[97]  A. Hofman,et al.  Actigraphic sleep duration and fragmentation are related to obesity in the elderly: the Rotterdam Study , 2008, International Journal of Obesity.

[98]  Ngianga-Bakwin Kandala,et al.  Meta-analysis of short sleep duration and obesity in children and adults. , 2008, Sleep.

[99]  T. Lehtimäki,et al.  Prolonged sleep restriction induces changes in pathways involved in cholesterol metabolism and inflammatory responses , 2016, Scientific Reports.

[100]  B. Soh,et al.  Tocotrienol is a cardioprotective agent against ageing-associated cardiovascular disease and its associated morbidities , 2018, Nutrition & Metabolism.

[101]  T. Apekey,et al.  Gamma glutamyltransferase and metabolic syndrome risk: a systematic review and dose–response meta‐analysis , 2015, International journal of clinical practice.

[102]  David C. Wilson,et al.  Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease , 2016, Nature Genetics.

[103]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[104]  A. Keshavarzian,et al.  Sleep disturbances and inflammatory bowel disease: a potential trigger for disease flare? , 2011, Expert review of clinical immunology.

[105]  Max A. Little,et al.  GWAS in 446,118 European adults identifies 78 genetic loci for self-reported habitual sleep duration supported by accelerometer-derived estimates , 2018, bioRxiv.

[106]  Tanya M. Teslovich,et al.  The Influence of Age and Sex on Genetic Associations with Adult Body Size and Shape: A Large-Scale Genome-Wide Interaction Study , 2015, PLoS Genetics.