Ultracold quantum gases in triangular optical lattices

Over recent years, exciting developments in the field of ultracold atoms confined in optical lattices have led to numerous theoretical proposals devoted to the quantum simulation of problems e.g. known from condensed matter physics. Many of those ideas demand experimental environments with non-cubic lattice geometries. In this paper, we report on the implementation of a versatile three-beam lattice allowing for the generation of triangular as well as hexagonal optical lattices. As an important step, the superfluid–Mott insulator (SF–MI) quantum phase transition has been observed and investigated in detail in this lattice geometry for the first time. In addition to this, we study the physics of spinor Bose–Einstein condensates (BEC) in the presence of the triangular optical lattice potential, especially spin changing dynamics across the SF–MI transition. Our results suggest that, below the SF–MI phase transition, a well-established mean-field model describes the observed data when renormalizing the spin-dependent interaction. Interestingly, this opens up new perspectives for a lattice-driven tuning of a spin dynamics resonance occurring through the interplay of the quadratic Zeeman effect and spin-dependent interaction. Finally, we discuss further lattice configurations that can be realized with our setup.

[1]  Immanuel Bloch,et al.  Resonant control of spin dynamics in ultracold quantum gases by microwave dressing , 2006, cond-mat/0601151.

[2]  D. Stamper-Kurn,et al.  Spontaneously modulated spin textures in a dipolar spinor bose-einstein condensate. , 2007, Physical review letters.

[3]  L. Duan,et al.  Signal of Bose-Einstein condensation in an optical lattice at finite temperature , 2007, 0705.4352.

[4]  Y. Maeno,et al.  Spin Disorder on a Triangular Lattice , 2005, Science.

[5]  C. Gardiner,et al.  Cold Bosonic Atoms in Optical Lattices , 1998, cond-mat/9805329.

[6]  I Bloch,et al.  Time-Resolved Observation and Control of Superexchange Interactions with Ultracold Atoms in Optical Lattices , 2007, Science.

[7]  R. Melko,et al.  Supersolid order from disorder: hard-core bosons on the triangular lattice. , 2005, Physical review letters.

[8]  J. Dalibard,et al.  Many-Body Physics with Ultracold Gases , 2007, 0704.3011.

[9]  S. Vishveshwara,et al.  Structure and stability of Mott-insulator shells of bosons trapped in an optical lattice , 2005, cond-mat/0501718.

[10]  W. Phillips,et al.  Mott-insulator transition in a two-dimensional atomic Bose gas. , 2007, Physical review letters.

[11]  Immanuel Bloch,et al.  Coherent collisional spin dynamics in optical lattices. , 2005, Physical review letters.

[12]  Cheng Chin,et al.  In situ observation of incompressible Mott-insulating domains in ultracold atomic gases , 2009, Nature.

[13]  J J Arlt,et al.  Dynamics of F=2 spinor Bose-Einstein condensates. , 2003, Physical review letters.

[14]  I. Bloch,et al.  Counting atoms using interaction blockade in an optical superlattice. , 2008, Physical review letters.

[15]  Stefan Wessel,et al.  Supersolid hard-core bosons on the triangular lattice. , 2005, Physical review letters.

[16]  Coates,et al.  Crystallography of optical lattices. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[17]  K. O’Hara,et al.  Laser-noise-induced heating in far-off resonance optical traps , 1997, QELS 1997.

[18]  P. Straten,et al.  Quantum phases in an optical lattice , 2000, cond-mat/0011108.

[19]  P. Zoller,et al.  Many-particle entanglement with Bose–Einstein condensates , 2000, Nature.

[20]  Imaging the Mott Insulator Shells by Using Atomic Clock Shifts , 2006, Science.

[21]  P. Zoller,et al.  Quantum computations with atoms in optical lattices: marker qubits and molecular interactions , 2004, quant-ph/0403197.

[22]  Li You,et al.  Coherent spinor dynamics in a spin-1 Bose condensate , 2005 .

[23]  W. Phillips,et al.  Condensate fraction in a 2D Bose gas measured across the Mott-insulator transition. , 2008, Physical review letters.

[24]  W. Ketterle,et al.  Bose-Einstein condensation , 1997 .

[25]  Evolution of a spinor condensate: Coherent dynamics, dephasing, and revivals , 2005, cond-mat/0509083.

[26]  Immanuel Bloch,et al.  Interference pattern and visibility of a Mott insulator (6 pages) , 2005 .

[27]  B. Svistunov,et al.  Revealing the superfluid–Mott-insulator transition in an optical lattice , 2002, cond-mat/0202510.

[28]  William D. Phillips,et al.  Controlled exchange interaction between pairs of neutral atoms in an optical lattice , 2007, Nature.

[29]  A. Neto,et al.  Exotic Superconducting Phases of Ultracold Atom Mixtures on Triangular Lattices , 2006, cond-mat/0609212.

[30]  M. Lewenstein,et al.  Frustrated quantum antiferromagnetism with ultracold bosons in a triangular lattice , 2009, 0907.0423.

[31]  Carl J. Williams,et al.  Effects of finite temperature on the Mott-insulator state (6 pages) , 2004, cond-mat/0407075.

[32]  Stefan Wessel,et al.  Quantum monte carlo simulations of confined bosonic atoms in optical lattices , 2004 .

[33]  L. Santos,et al.  Quasirelativistic behavior of cold atoms in light fields , 2007, 0712.1677.

[34]  I. Bloch,et al.  Coherent collisional spin-dynamics in an optical lattice , 2006 .

[35]  W. Phillips,et al.  Bose-Einstein condensate in a uniform light-induced vector potential. , 2008, Physical review letters.

[36]  J. V. Porto,et al.  Adiabatic loading of bosons into optical lattices (8 pages) , 2004 .

[37]  Spatial quantum noise interferometry in expanding ultracold atom clouds , 2005, Nature.

[38]  W. Ketterle,et al.  Observation of Metastable States in Spinor Bose-Einstein Condensates , 1999 .

[39]  A. Hemmerich,et al.  Staggered-vortex superfluid of ultracold bosons in an optical lattice. , 2007, Physical review letters.

[40]  Fisher,et al.  Boson localization and the superfluid-insulator transition. , 1989, Physical review. B, Condensed matter.

[41]  J. Cirac,et al.  Atomic quantum gases in Kagomé lattices. , 2004, Physical review letters.

[42]  L. D. Carr,et al.  The nonlinear Dirac equation in Bose–Einstein condensates: Foundation and symmetries , 2008, 0803.3039.

[43]  Y. Kato,et al.  Sharp peaks in the momentum distribution of bosons in optical lattices in the normal state , 2008 .

[44]  Immanuel Bloch,et al.  Quantum Phase Transition from a Superfluid to a Mott Insulator in a Gas of Ultracold Atoms. , 2002 .

[45]  K. Sengstock,et al.  Bose-Einstein condensation at constant temperature , 2004, cond-mat/0402003.

[46]  M D Barrett,et al.  Observation of spinor dynamics in optically trapped 87Rb Bose-Einstein condensates. , 2003, Physical review letters.

[47]  M. Vengalattore,et al.  Spontaneous symmetry breaking in a quenched ferromagnetic spinor Bose–Einstein condensate , 2006, Nature.

[48]  T. Esslinger,et al.  Transition from a strongly interacting 1d superfluid to a Mott insulator. , 2003, Physical review letters.

[49]  J. Cirac,et al.  Creation of a molecular condensate by dynamically melting a Mott insulator. , 2002, Physical review letters.

[50]  C. Ospelkaus,et al.  Ultracold heteronuclear molecules in a 3D optical lattice. , 2006, Physical review letters.

[51]  W. Zwerger,et al.  Mott-Hubbard transition of cold atoms in optical lattices , 2002 .

[52]  Intrinsic heating and cooling in adiabatic processes for bosons in optical lattices. , 2007, Physical review letters.

[53]  K. Sengstock,et al.  Spontaneous pattern formation in an antiferromagnetic quantum gas. , 2009, Physical review letters.

[54]  Adiabatic loading of bosons into optical lattices , 2003, cond-mat/0307655.

[55]  Immanuel Bloch,et al.  Phase coherence of an atomic Mott insulator. , 2005, Physical review letters.

[56]  K. Sengstock,et al.  Magnetically tuned spin dynamics resonance. , 2006, Physical review letters.

[57]  F. Gerbier Boson Mott insulators at finite temperatures. , 2007, Physical review letters.

[58]  Michael Albiez,et al.  Direct observation of tunneling and nonlinear self-trapping in a single bosonic Josephson junction. , 2005, Physical review letters.

[59]  Expansion of a quantum gas released from an optical lattice. , 2008, Physical review letters.