Estimation of Contact Stiffness and its Role in the Design of a Friction Damper

The use of under-platform friction dampers is a common practice for the elimination of high cycle fatigue failures of turbomachinery blading. Damper performance curves and damper optimization curves are used for the design of friction dampers. It is establishedAAfrom the previous work that apart from damper mass, the contact stiffness between damper and the blade platform is an important parameter in achieving a good damper design. Several methods for the estimation of damper stiffness have been proposed in the literature. Some of them include: 1. Curve fitting approach to a measured frequency response function, 2. Compliance measurement, 3. Measurement of hysteresis loop etc. However, it is not possible to carry out extensive sets of experiments to observe the influence of various parameters on the contact stiffness. Numerical and/or analytical models for contact stiffness evaluation are the present needs for a damper designer. This paper addresses a detailed investigation of the contact stiffness computation. Finite element modeling of the damper and the platform is carried out to study the effect of various parameters such as friction coefficient, centrifugal load, material properties etc. on the contact stiffness. The role of surface roughness and wear are neglected in the present analysis. The reliability of the applied finite element meshes is verified by simulating Hertz’s contact problems. The parametric study indicates that the contact stiffness builds up with increase in friction coefficient, centrifugal force and elastic modulus of the damper material. The results received from a pilot experiment are also presented for further evaluation of the computed results. Finally, a very good agreement between the numerical and experimental performance curves (resonance response amplitude of the blade versus excitation amplitude for the constant damper mass; Cameron et. al, 1987) of the blade with the damper is found for the tangential contact stiffness obtained from the finite element calculation. The present work extends the quest for a rational approach to damper design.© 2001 ASME