On Fourier Transforms of Radial Functions and Distributions
暂无分享,去创建一个
[1] H. Kober. ON FRACTIONAL INTEGRALS AND DERIVATIVES , 1940 .
[2] W. D. Evans,et al. PARTIAL DIFFERENTIAL EQUATIONS , 1941 .
[3] Hassler Whitney,et al. Differentiable even functions , 1943 .
[4] J. F. Treves. Lectures on linear partial differential equations with constant coefficients , 1961 .
[5] A. Zemanian. A Distributional Hankel Transformation , 1966 .
[6] Mark S. C. Reed,et al. Method of Modern Mathematical Physics , 1972 .
[7] M. Reed,et al. Fourier Analysis, Self-Adjointness , 1975 .
[8] M. Reed,et al. Methods of Modern Mathematical Physics. 2. Fourier Analysis, Self-adjointness , 1975 .
[9] Barry Simon,et al. Methods of modern mathematical physics. III. Scattering theory , 1979 .
[10] Z. Szmydt. On homogeneous rotation invariant distributions and the Laplace operator , 1979 .
[11] A. Zemanian. Generalized Integral Transformations , 1987 .
[12] O. P. Singh,et al. The Fourier-Bessel series representation of the pseudo-differential operator (-⁻¹)^{} , 1992 .
[13] O. Marichev,et al. Fractional Integrals and Derivatives: Theory and Applications , 1993 .
[14] Robert Schaback,et al. Operators on radial functions , 1996 .
[15] E. Liflyand,et al. On asymptotics for a class of radial Fourier transforms , 1998 .
[16] Gerald Teschl,et al. Mathematical Methods in Quantum Mechanics , 2009 .
[17] L. Grafakos. Classical Fourier Analysis , 2010 .
[18] L. Evans,et al. Partial Differential Equations , 1941 .
[19] Gerald Teschl,et al. Weyl–Titchmarsh Theory for Schrödinger Operators with Strongly Singular Potentials , 2011 .
[20] 新國 裕昭,et al. 書評 Gerald Teschl : Mathematical Methods in Quantum Mechanics : With Applications to Schrodinger Operators , 2013 .