The VIMOS Public Extragalactic Redshift Survey (VIPERS) - On the recovery of the count-in-cell probability distribution function

We compare three methods to measure the count-in-cell probability density function of galaxies in a spectroscopic redshift survey. From this comparison we found that when the sampling is low (the average number of object per cell is around unity) it is necessary to use a parametric method to model the galaxy distribution. We used a set of mock catalogues of VIPERS, in order to verify if we were able to reconstruct the cell-count probability distribution once the observational strategy is applied. We find that in the simulated catalogues, the probability distribution of galaxies is better represented by a Gamma expansion than a Skewed Log-Normal. Finally, we correct the cell-count probability distribution function from the angular selection effect of the VIMOS instrument and study the redshift and absolute magnitude dependency of the underlying galaxy density function in VIPERS from redshift $0.5$ to $1.1$. We found very weak evolution of the probability density distribution function and that it is well approximated, independently from the chosen tracers, by a Gamma distribution.

[1]  R. Nichol,et al.  The VIMOS Public Extragalactic Redshift Survey (VIPERS) - Hierarchical scaling and biasing , 2015, 1505.05347.

[2]  T. Ensslin,et al.  Log-transforming the matter power spectrum , 2013, 1312.1354.

[3]  G. Zamorani,et al.  The VIMOS Public Extragalactic Survey (VIPERS) - First Data Release of 57 204 spectroscopic measurements , 2013, 1310.1008.

[4]  G. Zamorani,et al.  The VIMOS Public Extragalactic Redshift Survey (VIPERS) - Galaxy clustering and redshift-space distortions at z ≃ 0.8 in the first data release , 2013, 1303.2622.

[5]  R. Nichol,et al.  The VIMOS Public Extragalactic Redshift Survey (VIPERS) - an unprecedented view of galaxies and large-scale structure at 0.5 < z < 1.2 , 2013, 1303.2623.

[6]  G. Zamorani,et al.  The VIMOS Public Extragalactic Redshift Survey (VIPERS): spectral classification through principal component analysis , 2012, 1207.4374.

[7]  A. Connolly,et al.  THE DEEP2 GALAXY REDSHIFT SURVEY: DESIGN, OBSERVATIONS, DATA REDUCTION, AND REDSHIFTS , 2012, 1203.3192.

[8]  L. Paioro,et al.  Easylife: The Data Reduction and Survey Handling System for VIPERS , 2012, 1210.4737.

[9]  J. Bel,et al.  Second-order matter fluctuations via higher order galaxy correlators , 2012, 1205.3200.

[10]  W. Saslaw,et al.  THE GALAXY COUNTS-IN-CELLS DISTRIBUTION FROM THE SLOAN DIGITAL SKY SURVEY , 2010, 1009.0013.

[11]  B. Garilli,et al.  Understanding the shape of the galaxy two-point correlation function at z ~= 1 in the COSMOS field , 2010, 1007.1984.

[12]  B. Garilli,et al.  THE zCOSMOS 10k-BRIGHT SPECTROSCOPIC SAMPLE , 2009 .

[13]  A. Mazure,et al.  The Vimos VLT deep survey Global properties of 20 000 galaxies in the IAB < 22.5 WIDE survey , 2008, 0804.4568.

[14]  A. Mazure,et al.  A test of the nature of cosmic acceleration using galaxy redshift distortions , 2008, Nature.

[15]  B. Garilli,et al.  The Very Large Telescope Visible Multi‐Object Spectrograph Mask Preparation Software , 2005 .

[16]  I. Szapudi,et al.  On Recovering the Nonlinear Bias Function from Counts-in-Cells Measurements , 2003, astro-ph/0308525.

[17]  Oliver LeFevre,et al.  Commissioning and performances of the VLT-VIMOS , 2003, SPIE Astronomical Telescopes + Instrumentation.

[18]  S. Colombi,et al.  Large scale structure of the universe and cosmological perturbation theory , 2001, astro-ph/0112551.

[19]  S.Cole,et al.  The 2dF Galaxy Redshift Survey: spectra and redshifts , 2001, astro-ph/0106498.

[20]  Pablo Fosalba,et al.  Gravitational Evolution of the Large-Scale Probability Density Distribution: The Edgeworth and Gamma Expansions , 2000 .

[21]  P. Fosalba,et al.  Gravitational Evolution of the Large-Scale Probability Density Distribution: The Edgeworth and Gamma Expansions , 1999, astro-ph/9906296.

[22]  Wayne Hu,et al.  Baryonic Features in the Matter Transfer Function , 1997, astro-ph/9709112.

[23]  Michael A. Strauss,et al.  Measuring High-Order Moments of the Galaxy Distribution from Counts in Cells: The Edgeworth Approximation , 1997, astro-ph/9702144.

[24]  Robert C. Nichol,et al.  Higher Order Statistics from the Edinburgh/Durham Southern Galaxy Catalogue Survey. I. Counts in Cells , 1996 .

[25]  R. Nichol,et al.  Higher Order Statistics from the EDSGC Survey I: Counts in Cells , 1996, astro-ph/9606097.

[26]  S. Colombi A 'skewed' lognormal approximation to the probablility distribution function of the large-scale density field , 1994, astro-ph/9402071.

[27]  E. al.,et al.  Moments of the Counts Distribution in the 1.2 Jansky IRAS Galaxy Redshift Survey , 1993, astro-ph/9305018.

[28]  B. Jones,et al.  A lognormal model for the cosmological mass distribution. , 1991 .

[29]  A. Hamilton,et al.  Thermodynamics and galaxy clustering: Nonlinear theory of high order correlations , 1984 .

[30]  P. Carruthers,et al.  A connection between galaxy probabilities in zwicky clusters counting distributions in particle physics and quantum optics , 1983 .

[31]  J. B. Oke,et al.  Secondary standard stars for absolute spectrophotometry , 1983 .

[32]  D. Layzer A new model for the distribution of galaxies in space , 1956 .