Intrinsic Parameterizations of Surface Meshes

Parameterization of discrete surfaces is a fundamental and widely‐used operation in graphics, required, for instance, for texture mapping or remeshing. As 3D data becomes more and more detailed, there is an increased need for fast and robust techniques to automatically compute least‐distorted parameterizations of large meshes. In this paper, we present new theoretical and practical results on the parameterization of triangulated surface patches. Given a few desirable properties such as rotation and translation invariance, we show that the only admissible parameterizations form a two‐dimensional set and each parameterization in this set can be computed using a simple, sparse, linear system. Since these parameterizations minimize the distortion of different intrinsic measures of the original mesh, we call them Intrinsic Parameterizations. In addition to this partial theoretical analysis, we propose robust, efficient and tunable tools to obtain least‐distorted parameterizations automatically. In particular, we give details on a novel, fast technique to provide an optimal mapping without fixing the boundary positions, thus providing a unique Natural Intrinsic Parameterization. Other techniques based on this parameterization family, designed to ease the rapid design of parameterizations, are also proposed.

[1]  Mark Meyer,et al.  Discrete Differential-Geometry Operators for Triangulated 2-Manifolds , 2002, VisMath.

[2]  Mark Meyer,et al.  Generalized Barycentric Coordinates on Irregular Polygons , 2002, J. Graphics, GPU, & Game Tools.

[3]  Bruno Lévy,et al.  Non-distorted texture mapping for sheared triangulated meshes , 1998, SIGGRAPH.

[4]  Ulrich Pinkall,et al.  Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..

[5]  Wayne E. Carlson A survey of computer graphics image encoding and storage formats , 1991, COMG.

[6]  Mark Meyer,et al.  Implicit fairing of irregular meshes using diffusion and curvature flow , 1999, SIGGRAPH.

[7]  Jean-Marc Vézien,et al.  Piecewise surface flattening for non-distorted texture mapping , 1991, SIGGRAPH.

[8]  A. She SURFACE PARAMETERIZATION FOR MESHING BY TRIANGULATION FLATTENING , 2000 .

[9]  Wayne E. Carlson,et al.  Shape transformation for polyhedral objects , 1992, SIGGRAPH.

[10]  Pedro V. Sander,et al.  Texture mapping progressive meshes , 2001, SIGGRAPH.

[11]  E. Sturler,et al.  Surface Parameterization for Meshing by Triangulation Flattenin , 2000 .

[12]  K. Hormann,et al.  Hierarchical Parametrization of Triangulated Surfaces , 2002 .

[13]  W. T. Tutte How to Draw a Graph , 1963 .

[14]  Martin Reimers,et al.  Meshless parameterization and surface reconstruction , 2001, Comput. Aided Geom. Des..

[15]  Laxmi Parida,et al.  Constraint-satisfying planar development of complex surfaces , 1993, Comput. Aided Des..

[16]  John M. Snyder,et al.  Signal-Specialized Parameterization , 2002 .

[17]  W. Press,et al.  Numerical Recipes in C++: The Art of Scientific Computing (2nd edn)1 Numerical Recipes Example Book (C++) (2nd edn)2 Numerical Recipes Multi-Language Code CD ROM with LINUX or UNIX Single-Screen License Revised Version3 , 2003 .

[18]  Bruno Lévy,et al.  Constrained texture mapping for polygonal meshes , 2001, SIGGRAPH.

[19]  Craig Gotsman,et al.  Guaranteed intersection-free polygon morphing , 2001, Comput. Graph..

[20]  Bruno Lévy,et al.  Least squares conformal maps for automatic texture atlas generation , 2002, ACM Trans. Graph..

[21]  W. Stuetzle,et al.  HIERARCHICAL COMPUTATION OF PL HARMONIC EMBEDDINGS , 1997 .

[22]  John F. Hughes,et al.  Modeling surfaces of arbitrary topology using manifolds , 1995, SIGGRAPH.

[23]  Peter Schröder,et al.  Consistent mesh parameterizations , 2001, SIGGRAPH.

[24]  Hans-Peter Seidel,et al.  Parameterizing Meshes with Arbitrary Topology , 1998 .

[25]  Guillermo Sapiro,et al.  Conformal Surface Parameterization for Texture Mapping , 1999 .

[26]  A. Gray Modern Differential Geometry of Curves and Surfaces , 1993 .

[27]  H. Hadwiger Vorlesungen über Inhalt, Oberfläche und Isoperimetrie , 1957 .

[28]  Tony DeRose,et al.  Multiresolution analysis of arbitrary meshes , 1995, SIGGRAPH.

[29]  Michael S. Floater,et al.  Parametrization and smooth approximation of surface triangulations , 1997, Comput. Aided Geom. Des..

[30]  Kristel Michielsen,et al.  Morphological Characterization of Spatial Patterns , 2000 .

[31]  Adam Finkelstein,et al.  Lapped textures , 2000, SIGGRAPH.

[32]  Michael Garland,et al.  Hierarchical face clustering on polygonal surfaces , 2001, I3D '01.

[33]  Marc Levoy,et al.  Fitting smooth surfaces to dense polygon meshes , 1996, SIGGRAPH.

[34]  T. Buchert,et al.  Minkowski Functionals in Cosmology , 1995, astro-ph/9508154.

[35]  Martin Rumpf,et al.  A variational approach to optimal meshes , 1996 .

[36]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[37]  Anne Verroust-Blondet,et al.  Interactive texture mapping , 1993, SIGGRAPH.

[38]  Charlie C. L. Wang,et al.  Surface flattening based on energy model , 2002, Comput. Aided Des..

[39]  K. Hormann,et al.  MIPS: An Efficient Global Parametrization Method , 2000 .

[40]  Michael S. Floater,et al.  Mean value coordinates , 2003, Comput. Aided Geom. Des..

[41]  Meng Sun,et al.  A Technique for Constructing Developable Surfaces , 1996, Graphics Interface.

[42]  Pedro V. Sander,et al.  Signal-Specialized Parametrization , 2002, Rendering Techniques.

[43]  David P. Dobkin,et al.  MAPS: multiresolution adaptive parameterization of surfaces , 1998, SIGGRAPH.

[44]  L. Santaló Integral geometry and geometric probability , 1976 .