MIL-101-NH2(Fe)-Coated Nylon Microfibers for Immobilized Photocatalysts in RhB and Cr(VI) Removal

[1]  R. Bal,et al.  Visible Light-Driven Metal-Organic Framework-Mediated Activation and Utilization of CO2 for the Thiocarboxylation of Olefins. , 2022, ACS applied materials & interfaces.

[2]  K. Baek,et al.  Feasible Detoxification Coating Material for Chemical Warfare Agents Using Poly(methyl methacrylate)-Branched Poly(ethyleneimine) Copolymer and Metal-Organic Framework Composites. , 2022, ACS applied materials & interfaces.

[3]  M. Jafarzadeh Recent Progress in the Development of MOF-Based Photocatalysts for the Photoreduction of Cr(VI). , 2022, ACS applied materials & interfaces.

[4]  Peng Wang,et al.  Photocatalytic Cr(VI) reduction over MIL-101(Fe)–NH2 immobilized on alumina substrate: From batch test to continuous operation , 2022, Chemical Engineering Journal.

[5]  Hyungsup Kim,et al.  Pore-size control of chitin nanofibrous composite membrane using metal-organic frameworks. , 2021, Carbohydrate polymers.

[6]  Yiting Chen,et al.  Photocatalyst immobilized by hydrogel, efficient degradation and self regeneration: A review , 2022, Materials Science in Semiconductor Processing.

[7]  Guozhu Li,et al.  State‐of‐the‐Art Advancements in Photocatalytic Hydrogenation: Reaction Mechanism and Recent Progress in Metal‐Organic Framework (MOF)‐Based Catalysts , 2021, Advanced science.

[8]  M. Zolfigol,et al.  Anodic electrosynthesis of MIL-53(Al)-N(CH2PO3H2)2 as a mesoporous catalyst for synthesis of novel (N-methyl-pyrrol)-pyrazolo[3,4-b]pyridines via a cooperative vinylogous anomeric based oxidation , 2021, Scientific Reports.

[9]  Bo Fu,et al.  Integration of MIL-101-NH2 into Cellulosic Foams for Efficient Cr(VI) Reduction under Visible Light , 2021, Industrial & Engineering Chemistry Research.

[10]  Mohamed Gar Alalm,et al.  Recent developments in recalcitrant organic pollutants degradation using immobilized photocatalysts , 2021, Applied Physics A.

[11]  A. S. da Silva Sobrinho,et al.  Physicochemical Studies on the Surface of Polyamide 6.6 Fabrics Functionalized by DBD Plasmas Operated at Atmospheric and Sub-Atmospheric Pressures , 2020, Polymers.

[12]  Katherine Mizrahi Rodriguez,et al.  Acid-Modulated Synthesis of High Surface Area Amine-Functionalized MIL-101(Cr) Nanoparticles for CO2 Separations , 2020 .

[13]  Hao Peng,et al.  Removal of chromium from wastewater by membrane filtration, chemical precipitation, ion exchange, adsorption electrocoagulation, electrochemical reduction, electrodialysis, electrodeionization, photocatalysis and nanotechnology: a review , 2020, Environmental Chemistry Letters.

[14]  Samar K. Das,et al.  Fabricating a MOF Material with Polybenzimidazole into an Efficient Proton Exchange Membrane , 2020 .

[15]  S. Ramakrishna,et al.  MOF [NH2-MIL-101(Fe)] as a powerful and reusable Fenton-like catalyst , 2020 .

[16]  M. Sung,et al.  Selective Infiltration in Polymer Hybrid Thin Films as a Gas Encapsulating Layer for the Stretchable Electronics. , 2020, ACS applied materials & interfaces.

[17]  Ismail I. I. Alkhatib,et al.  Metal-organic frameworks for photocatalytic CO2 reduction under visible radiation: A review of strategies and applications , 2020, Catalysis Today.

[18]  K. Lin,et al.  Enhanced degradation of toxic azo dye, amaranth, in water using Oxone catalyzed by MIL-101-NH2 under visible light irradiation , 2019, Separation and Purification Technology.

[19]  Huifen Fu,et al.  The facile fabrication of 2D/3D Z-scheme g-C3N4/UiO-66 heterojunction with enhanced photocatalytic Cr(VI) reduction performance under white light , 2019, Chemical Engineering Journal.

[20]  Kilaru Harsha Vardhan,et al.  A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives , 2019, Journal of Molecular Liquids.

[21]  P. Alvarez,et al.  The Technology Horizon for Photocatalytic Water Treatment: Sunrise or Sunset? , 2019, Environmental science & technology.

[22]  Peng Wang,et al.  Robust photocatalytic reduction of Cr(VI) on UiO-66-NH2(Zr/Hf) metal-organic framework membrane under sunlight irradiation , 2019, Chemical Engineering Journal.

[23]  V. Zardetto,et al.  Chemical Analysis of the Interface between Hybrid Organic–Inorganic Perovskite and Atomic Layer Deposited Al2O3 , 2019, ACS applied materials & interfaces.

[24]  G. Zeng,et al.  State-of-the-Art Advances and Challenges of Iron-Based Metal Organic Frameworks from Attractive Features, Synthesis to Multifunctional Applications. , 2018, Small.

[25]  Zhanhu Guo,et al.  Progress on the Photocatalytic Reduction Removal of Chromium Contamination. , 2018, Chemical record.

[26]  J. Bouvard,et al.  Mechanical Behavior—Microstructure Relationships in Injection-Molded Polyamide 66 , 2018, Polymers.

[27]  Xiao-lin Wang,et al.  Metal-Organic Framework Nanocomposite Thin Films with Interfacial Bindings and Self-Standing Robustness for High Water Flux and Enhanced Ion Selectivity. , 2018, ACS nano.

[28]  M. Sung,et al.  Ultra Gas-Proof Polymer Hybrid Thin Layer. , 2018, Nano letters.

[29]  M. Casciola,et al.  Mixed Membrane Matrices Based on Nafion/UiO-66/SO3H-UiO-66 Nano-MOFs: Revealing the Effect of Crystal Size, Sulfonation, and Filler Loading on the Mechanical and Conductivity Properties. , 2017, ACS applied materials & interfaces.

[30]  Huibo Wang,et al.  New Insight of Water-Splitting Photocatalyst: H2O2-Resistance Poisoning and Photothermal Deactivation in Sub-micrometer CoO Octahedrons. , 2017, ACS applied materials & interfaces.

[31]  J. Chen,et al.  Effective Adsorption and Removal of Phosphate from Aqueous Solutions and Eutrophic Water by Fe-based MOFs of MIL-101 , 2017, Scientific Reports.

[32]  Abdullah M. Asiri,et al.  Metal-Organic Framework (MOF) Compounds: Photocatalysts for Redox Reactions and Solar Fuel Production. , 2016, Angewandte Chemie.

[33]  C. Hopmann,et al.  The Mechanical Behavior of ALD‐Polymer Hybrid Films Under Tensile Strain , 2015 .

[34]  C. Ritsema,et al.  Emerging pollutants in the environment: A challenge for water resource management , 2015, International Soil and Water Conservation Research.

[35]  M. Roeffaers,et al.  Iron(III)-based metal-organic frameworks as visible light photocatalysts. , 2013, Journal of the American Chemical Society.

[36]  C. Serre,et al.  Impact of the Flexible Character of MIL-88 Iron(III) Dicarboxylates on the Adsorption of n-Alkanes , 2013 .

[37]  Mikko Ritala,et al.  Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends , 2013 .

[38]  O. Shekhah,et al.  MOF thin films: existing and future applications. , 2011, Chemical Society reviews.

[39]  K. Lillerud,et al.  Post-synthetic modification of the metal–organic framework compound UiO-66 , 2010 .

[40]  R. Ullah,et al.  Strategies of making TiO2 and ZnO visible light active. , 2009, Journal of hazardous materials.

[41]  Steven M. George,et al.  Al2O3 Atomic Layer Deposition with Trimethylaluminum and Ozone Studied by in Situ Transmission FTIR Spectroscopy and Quadrupole Mass Spectrometry , 2008 .

[42]  C. Serre,et al.  High-throughput assisted rationalization of the formation of metal organic frameworks in the Iron(III) aminoterephthalate solvothermal system. , 2008, Inorganic chemistry.

[43]  Mato Knez,et al.  Synthesis and Surface Engineering of Complex Nanostructures by Atomic Layer Deposition , 2007 .

[44]  J. E. Boyd,et al.  Solvent Deposition of Titanium Dioxide on Acrylic for Photocatalytic Application , 2007 .

[45]  S. George,et al.  Molecular Layer Deposition of Nylon 66 Films Examined Using in Situ FTIR Spectroscopy , 2007 .

[46]  M. Subrahmanyam,et al.  Immobilized TiO2 photocatalyst during long-term use: decrease of its activity , 2004 .

[47]  Mikko Ritala,et al.  Atomic layer deposition chemistry: recent developments and future challenges. , 2003, Angewandte Chemie.

[48]  M. Gardner,et al.  Determination of trace concentrations of hexavalent chromium. , 2002, The Analyst.