Robustness encoded across essential and accessory replicons in an ecologically versatile bacterium

Bacterial genome evolution is characterized by gains, losses, and rearrangements of functional genetic segments. The extent to which genotype-phenotype relationships are influenced by large-scale genomic alterations has not been investigated in a high-throughput manner. In the symbiotic soil bacterium Sinorhizobium meliloti, the genome is composed of a chromosome and two large extrachromosomal replicons (pSymA and pSymB, which together constitute 45% of the genome). Massively parallel transposon insertion sequencing (Tn-seq) was employed to evaluate contributions of chromosomal genes to fitness in both the presence and absence of these extrachromosomal replicons. Ten percent of chromosomal genes from diverse functional categories are shown to genetically interact with pSymA and pSymB. These results demonstrate the pervasive robustness provided by the extrachromosomal replicons, which is further supported by constraint-based metabolic modelling. A comprehensive picture of core S. meliloti metabolism was generated through a Tn-seq-guided in silico metabolic network reconstruction, producing a core network encompassing 726 genes. This integrated approach facilitated functional assignments for previously uncharacterized genes, while also revealing that Tn-seq alone misses over a quarter of wild type metabolism. This work highlights the strong functional dependencies and epistatic relationships that may arise between bacterial replicons and across a genome, while also demonstrating how Tn-seq and metabolic modelling can be used together to yield insights not obtainable by either method alone.

[1]  D. Berg,et al.  Specificity of transposon Tn5 insertion. , 1983, Genetics.

[2]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[3]  S. Long,et al.  Generalized transduction in Rhizobium meliloti , 1984, Journal of bacteriology.

[4]  J. Lupski,et al.  The use of transposon Tn5 mutagenesis in the rapid generation of correlated physical and genetic maps of DNA segments cloned into multicopy plasmids--a review. , 1984, Gene.

[5]  T. Finan,et al.  Second symbiotic megaplasmid in Rhizobium meliloti carrying exopolysaccharide and thiamine synthesis genes , 1986, Journal of bacteriology.

[6]  G. Ditta,et al.  The ndvA gene product of Rhizobium meliloti is required for beta-(1----2)glucan production and has homology to the ATP-binding export protein HlyB , 1988, Journal of bacteriology.

[7]  G. Ditta,et al.  The ndvB locus of Rhizobium meliloti encodes a 319-kDa protein involved in the production of beta-(1----2)-glucan. , 1990, The Journal of biological chemistry.

[8]  A. L. Campbell,et al.  Aspartate transcarbamoylase genes of Pseudomonas putida: requirement for an inactive dihydroorotase for assembly into the dodecameric holoenzyme , 1995, Journal of bacteriology.

[9]  S. Karlin,et al.  Strand compositional asymmetry in bacterial and large viral genomes. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[10]  W. Reznikoff,et al.  Tn5/IS50 target recognition. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[11]  I. Oresnik,et al.  Megaplasmid pRme2011a of Sinorhizobium meliloti Is Not Required for Viability , 2000, Journal of bacteriology.

[12]  G. Walker,et al.  Deficiency of a Sinorhizobium meliloti bacA Mutant in Alfalfa Symbiosis Correlates with Alteration of the Cell Envelope , 2002, Journal of bacteriology.

[13]  Bernard Labedan,et al.  Using quaternary structures to assess the evolutionary history of proteins: the case of the aspartate carbamoyltransferase. , 2003, Molecular biology and evolution.

[14]  T. Finan,et al.  Regulation and Properties of PstSCAB, a High-Affinity, High-Velocity Phosphate Transport System of Sinorhizobium meliloti , 2006, Journal of bacteriology.

[15]  Lisa C. Crossman,et al.  The genome of Rhizobium leguminosarum has recognizable core and accessory components , 2006, Genome Biology.

[16]  Michael Hucka,et al.  SBMLToolbox: an SBML toolbox for MATLAB users , 2006, Bioinform..

[17]  J. Errington,et al.  Essential Bacterial Functions Encoded by Gene Pairs , 2006, Journal of bacteriology.

[18]  Michael Hucka,et al.  LibSBML: an API Library for SBML , 2008, Bioinform..

[19]  Huiming Ding,et al.  eSGA: E. coli synthetic genetic array analysis , 2008, Nature Methods.

[20]  J. Griffitts,et al.  A symbiotic mutant of Sinorhizobium meliloti reveals a novel genetic pathway involving succinoglycan biosynthetic functions , 2008, Molecular microbiology.

[21]  J. Griffitts,et al.  A Sinorhizobium meliloti osmosensory two‐component system required for cyclic glucan export and symbiosis , 2008, Molecular microbiology.

[22]  P. Phillips Epistasis — the essential role of gene interactions in the structure and evolution of genetic systems , 2008, Nature Reviews Genetics.

[23]  Hadley Wickham,et al.  ggplot2 - Elegant Graphics for Data Analysis (2nd Edition) , 2017 .

[24]  Ning Ma,et al.  BLAST+: architecture and applications , 2009, BMC Bioinformatics.

[25]  Steven J. M. Jones,et al.  Circos: an information aesthetic for comparative genomics. , 2009, Genome research.

[26]  Sean R Eddy,et al.  A new generation of homology search tools based on probabilistic inference. , 2009, Genome informatics. International Conference on Genome Informatics.

[27]  B. Palsson,et al.  Metabolic systems biology , 2009, Encyclopedia of Complexity and Systems Science.

[28]  Zachary L. Fowler,et al.  Increased Malonyl Coenzyme A Biosynthesis by Tuning the Escherichia coli Metabolic Network and Its Application to Flavanone Production , 2009, Applied and Environmental Microbiology.

[29]  B. McCarry,et al.  A shotgun lipidomics study of a putative lysophosphatidic acid acyl transferase (PlsC) in Sinorhizobium meliloti. , 2009, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[30]  A. Camilli,et al.  Tn-seq; high-throughput parallel sequencing for fitness and genetic interaction studies in microorganisms , 2009, Nature Methods.

[31]  V. Schachter,et al.  Genome-scale models of bacterial metabolism: reconstruction and applications , 2008, FEMS microbiology reviews.

[32]  B. Palsson,et al.  A protocol for generating a high-quality genome-scale metabolic reconstruction , 2010 .

[33]  Ryan P. J. Lower,et al.  Introducing the bacterial 'chromid': not a chromosome, not a plasmid. , 2010, Trends in microbiology.

[34]  D. Mazel,et al.  Silent Mischief: Bacteriophage Mu Insertions Contaminate Products of Escherichia coli Random Mutagenesis Performed Using Suicidal Transposon Delivery Plasmids Mobilized by Broad-Host-Range RP4 Conjugative Machinery , 2010, Journal of bacteriology.

[35]  J. Griffitts,et al.  FeuN, a novel modulator of two‐component signalling identified in Sinorhizobium meliloti , 2010, Molecular microbiology.

[36]  Hanbo Chen,et al.  VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R , 2011, BMC Bioinformatics.

[37]  Gary D Bader,et al.  The Genetic Landscape of a Cell , 2010, Science.

[38]  Jeffrey D Orth,et al.  What is flux balance analysis? , 2010, Nature Biotechnology.

[39]  Ulrich Bodenhofer,et al.  APCluster: an R package for affinity propagation clustering , 2011, Bioinform..

[40]  S. Clifton,et al.  High-throughput comparison of gene fitness among related bacteria , 2012, BMC Genomics.

[41]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer , 2011, Nature Biotechnology.

[42]  Peer Bork,et al.  iPath2.0: interactive pathway explorer , 2011, Nucleic Acids Res..

[43]  Ronan M. T. Fleming,et al.  Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0 , 2007, Nature Protocols.

[44]  C. Fairhead,et al.  Insertion site preference of Mu, Tn5, and Tn7 transposons , 2012, Mobile DNA.

[45]  M. Ackermann,et al.  Patterns of Evolutionary Conservation of Essential Genes Correlate with Their Compensability , 2012, PLoS genetics.

[46]  Robert D. Finn,et al.  Skylign: a tool for creating informative, interactive logos representing sequence alignments and profile hidden Markov models , 2014, BMC Bioinformatics.

[47]  T. Finan,et al.  The tRNAarg Gene and engA Are Essential Genes on the 1.7-Mb pSymB Megaplasmid of Sinorhizobium meliloti and Were Translocated Together from the Chromosome in an Ancestral Strain , 2012, Journal of bacteriology.

[48]  A. Camilli,et al.  Transposon insertion sequencing: a new tool for systems-level analysis of microorganisms , 2013, Nature Reviews Microbiology.

[49]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration , 2012, Briefings Bioinform..

[50]  Neil D. Rawlings,et al.  New mini- zincin structures provide a minimal scaffold for members of this metallopeptidase superfamily , 2014, BMC Bioinformatics.

[51]  S. Lory,et al.  A Comprehensive Analysis of In Vitro and In Vivo Genetic Fitness of Pseudomonas aeruginosa Using High-Throughput Sequencing of Transposon Libraries , 2013, PLoS pathogens.

[52]  C. Yost,et al.  Construction of a mariner-based transposon vector for use in insertion sequence mutagenesis in selected members of the Rhizobiaceae , 2014, BMC Microbiology.

[53]  G. B. Golding,et al.  Examination of Prokaryotic Multipartite Genome Evolution through Experimental Genome Reduction , 2014, PLoS genetics.

[54]  Hong Yang,et al.  Genome-Scale Metabolic Network Validation of Shewanella oneidensis Using Transposon Insertion Frequency Analysis , 2014, PLoS Comput. Biol..

[55]  Bingyao Zhu,et al.  Bacillus subtilis and Escherichia coli essential genes and minimal cell factories after one decade of genome engineering. , 2014, Microbiology.

[56]  Y. Brun,et al.  Identification of essential alphaproteobacterial genes reveals operational variability in conserved developmental and cell cycle systems , 2014, Molecular microbiology.

[57]  Shankar Balachandran,et al.  Fast-SL: an efficient algorithm to identify synthetic lethal sets in metabolic networks , 2014, Bioinform..

[58]  Edward J. O'Brien,et al.  Using Genome-scale Models to Predict Biological Capabilities , 2015, Cell.

[59]  M. Ritchie,et al.  Methods of integrating data to uncover genotype–phenotype interactions , 2015, Nature Reviews Genetics.

[60]  Hyungwon Choi,et al.  Gene Essentiality Is a Quantitative Property Linked to Cellular Evolvability , 2015, Cell.

[61]  Effects of synthetic large-scale genome reduction on metabolism and metabolic preferences in a nutritionally complex environment , 2016, Metabolomics.

[62]  M. Dunn Key roles of microsymbiont amino acid metabolism in rhizobia-legume interactions , 2015, Critical reviews in microbiology.

[63]  C. Harwood,et al.  Essential Genome of the Metabolically Versatile Alphaproteobacterium Rhodopseudomonas palustris , 2015, Journal of bacteriology.

[64]  Genetic redundancy is prevalent within the 6.7 Mb Sinorhizobium meliloti genome , 2015, Molecular Genetics and Genomics.

[65]  Soyeon I Lippman,et al.  General and condition-specific essential functions of Pseudomonas aeruginosa , 2015, Proceedings of the National Academy of Sciences.

[66]  Arnaud Martin,et al.  The differential view of genotype–phenotype relationships , 2015, Front. Genet..

[67]  Matteo Brilli,et al.  Evolution of Intra-specific Regulatory Networks in a Multipartite Bacterial Genome , 2015, PLoS Comput. Biol..

[68]  T. Finan,et al.  Metabolic modelling reveals the specialization of secondary replicons for niche adaptation in Sinorhizobium meliloti , 2016, Nature Communications.

[69]  T. Finan,et al.  Genomic resources for identification of the minimal N2 -fixing symbiotic genome. , 2016, Environmental microbiology.

[70]  M. Waldor,et al.  The design and analysis of transposon insertion sequencing experiments , 2016, Nature Reviews Microbiology.

[71]  D. G. Gibson,et al.  Design and synthesis of a minimal bacterial genome , 2016, Science.

[72]  C. Yost,et al.  The Use of Transposon Insertion Sequencing to Interrogate the Core Functional Genome of the Legume Symbiont Rhizobium leguminosarum , 2016, Front. Microbiol..

[73]  D. Bumann,et al.  Combining Shigella Tn-seq data with gold-standard E. coli gene deletion data suggests rare transitions between essential and non-essential gene functionality , 2016, BMC Microbiology.

[74]  Mario Juhas,et al.  On the road to synthetic life: the minimal cell and genome-scale engineering , 2015, Critical reviews in biotechnology.

[75]  Minoru Kanehisa,et al.  KEGG as a reference resource for gene and protein annotation , 2015, Nucleic Acids Res..

[76]  Jared T. Broddrick,et al.  Unique attributes of cyanobacterial metabolism revealed by improved genome-scale metabolic modeling and essential gene analysis , 2016, Proceedings of the National Academy of Sciences.

[77]  Kevin L. Boehme,et al.  Genome-Wide Sensitivity Analysis of the Microsymbiont Sinorhizobium meliloti to Symbiotically Important, Defensin-Like Host Peptides , 2017, mBio.

[78]  M. Østerås,et al.  A Key Regulator of the Glycolytic and Gluconeogenic Central Metabolic Pathways in Sinorhizobium meliloti , 2017, Genetics.

[79]  Barney A. Geddes,et al.  Role of O2 in the Growth of Rhizobium leguminosarum bv. viciae 3841 on Glucose and Succinate , 2016, Journal of bacteriology.

[80]  T. Finan,et al.  Heterologous Complementation Reveals a Specialized Activity for BacA in the Medicago-Sinorhizobium meliloti Symbiosis. , 2017, Molecular plant-microbe interactions : MPMI.

[81]  T. Finan,et al.  PhoU Allows Rapid Adaptation to High Phosphate Concentrations by Modulating PstSCAB Transport Rate in Sinorhizobium meliloti , 2017, Journal of bacteriology.

[82]  Marco Galardini,et al.  Construction and Analysis of Two Genome-Scale Deletion Libraries for Bacillus subtilis. , 2017, Cell systems.

[83]  C. Chan,et al.  Genome Scale Mutational Analysis of Geobacter sulfurreducens Reveals Distinct Molecular Mechanisms for Respiration and Sensing of Poised Electrodes versus Fe(III) Oxides , 2017, Journal of bacteriology.

[84]  George C. diCenzo,et al.  The Divided Bacterial Genome: Structure, Function, and Evolution , 2017, Microbiology and Molecular Biology Reviews.

[85]  Orkun S. Soyer,et al.  An integrated computational-experimental approach reveals Yersinia pestis genes essential across a narrow or a broad range of environmental conditions , 2017, BMC Microbiology.

[86]  T. Donohue,et al.  Combining Genome-Scale Experimental and Computational Methods To Identify Essential Genes in Rhodobacter sphaeroides , 2017, mSystems.

[87]  Jason A. Papin,et al.  Reconstruction of the metabolic network of Pseudomonas aeruginosa to interrogate virulence factor synthesis , 2017, Nature Communications.

[88]  Weisheng Wu,et al.  Genome-wide transposon mutagenesis of Proteus mirabilis: Essential genes, fitness factors for catheter-associated urinary tract infection, and the impact of polymicrobial infection on fitness requirements , 2017, PLoS pathogens.