Action of polystyrene nanoparticles of different sizes on lysosomal function and integrity

[1]  T. Pieber,et al.  Action of polystyrene nanoparticles of different sizes on lysosomal function and integrity , 2012, Particle and Fibre Toxicology.

[2]  T. Pieber,et al.  Cytotoxity of nanoparticles is influenced by size, proliferation and embryonic origin of the cells used for testing , 2012, Nanotoxicology.

[3]  M. Al-Rawi,et al.  Uptake and intracellular localization of submicron and nano-sized SiO2 particles in HeLa cells , 2011, Archives of Toxicology.

[4]  Charalambos Kaittanis,et al.  Surface-charge-dependent cell localization and cytotoxicity of cerium oxide nanoparticles. , 2010, ACS nano.

[5]  D. M. Mengual Gómez,et al.  Effects of Fetal Bovine Serum deprivation in cell cultures on the production of Anticarsia gemmatalis Multinucleopolyhedrovirus , 2010, BMC biotechnology.

[6]  Gaurav Sahay,et al.  Endocytosis of nanomedicines. , 2010, Journal of controlled release : official journal of the Controlled Release Society.

[7]  C. Soto,et al.  Bioaccumulation and toxicity of gold nanoparticles after repeated administration in mice. , 2010, Biochemical and biophysical research communications.

[8]  K. Jensen,et al.  Airway exposure to silica-coated TiO2 nanoparticles induces pulmonary neutrophilia in mice. , 2010, Toxicological sciences : an official journal of the Society of Toxicology.

[9]  V. Sée,et al.  Gold nanoparticles delivery in mammalian live cells: a critical review , 2010, Nano reviews.

[10]  P. Held Automated Detection of Drug-Induced Lysosomal Cytotoxicity , 2010 .

[11]  S. Bhattacharyya,et al.  Chloroquine reduces arylsulphatase B activity and increases chondroitin-4-sulphate: implications for mechanisms of action and resistance , 2009, Malaria Journal.

[12]  Yaping Li,et al.  Intracellular localization and cytotoxicity of spherical mesoporous silica nano- and microparticles. , 2009, Small.

[13]  Jean Krutmann,et al.  Long-term exposure to traffic-related particulate matter impairs cognitive function in the elderly. , 2009, Environmental research.

[14]  Eva Roblegg,et al.  Cytotoxicity of nanoparticles independent from oxidative stress. , 2009, The Journal of toxicological sciences.

[15]  François Treussart,et al.  Photoluminescent diamond nanoparticles for cell labeling: study of the uptake mechanism in mammalian cells. , 2009, ACS nano.

[16]  H. McMahon,et al.  Mechanisms of endocytosis. , 2009, Annual review of biochemistry.

[17]  Guping Tang,et al.  In vivo acute toxicity of titanium dioxide nanoparticles to mice after intraperitioneal injection , 2009, Journal of applied toxicology : JAT.

[18]  Eleonore Fröhlich,et al.  The role of nanoparticle size in hemocompatibility. , 2009, Toxicology.

[19]  Lucia Migliore,et al.  Environmental-induced oxidative stress in neurodegenerative disorders and aging. , 2009, Mutation research.

[20]  M. Young,et al.  Intracellular Distribution of Macrophage Targeting Ferritin–Iron Oxide Nanocomposite , 2009 .

[21]  P. Frickers,et al.  Lysosomal cytotoxicity of carbon nanoparticles in cells of the molluscan immune system: An in vitro study , 2009 .

[22]  H. Goto,et al.  Novel application of 4-nitro-7-(1-piperazinyl)-2,1,3-benzoxadiazole to visualize lysosomes in live cells. , 2008, BioTechniques.

[23]  A. Tres,et al.  Dendritic cell uptake of iron‐based magnetic nanoparticles , 2008, Cell biology international.

[24]  Mathias Brust,et al.  Uptake and intracellular fate of surface-modified gold nanoparticles. , 2008, ACS nano.

[25]  Ming-Hsien Tsai,et al.  Computational and ultrastructural toxicology of a nanoparticle, Quantum Dot 705, in mice. , 2008, Environmental science & technology.

[26]  Christian Mühlfeld,et al.  Translocation and cellular entering mechanisms of nanoparticles in the respiratory tract. , 2008, Swiss medical weekly.

[27]  Katja Broeg,et al.  Effects of nanoparticles in Mytilus edulis gills and hepatopancreas - a new threat to marine life? , 2008, Marine environmental research.

[28]  T. Dierks,et al.  Arylsulfatase G, a Novel Lysosomal Sulfatase* , 2008, Journal of Biological Chemistry.

[29]  E. Fabian,et al.  Tissue distribution and toxicity of intravenously administered titanium dioxide nanoparticles in rats , 2008, Archives of Toxicology.

[30]  Helinor J Johnston,et al.  Air Pollution, Ultrafine and Nanoparticle Toxicology: Cellular and Molecular Interactions , 2007, IEEE Transactions on NanoBioscience.

[31]  Ming-Hsien Tsai,et al.  Persistent Tissue Kinetics and Redistribution of Nanoparticles, Quantum Dot 705, in Mice: ICP-MS Quantitative Assessment , 2007, Environmental health perspectives.

[32]  J. Jung,et al.  Twenty-Eight-Day Inhalation Toxicity Study of Silver Nanoparticles in Sprague-Dawley Rats , 2007, Inhalation toxicology.

[33]  D. Maysinger,et al.  Quantum dots and other fluorescent nanoparticles: quo vadis in the cell? , 2007, Advances in experimental medicine and biology.

[34]  Justin Hanes,et al.  Privileged delivery of polymer nanoparticles to the perinuclear region of live cells via a non-clathrin, non-degradative pathway. , 2007, Biomaterials.

[35]  Jürgen Borlak,et al.  Drug‐induced phospholipidosis , 2006, FEBS letters.

[36]  M. Garnett,et al.  Nanomedicines and nanotoxicology: some physiological principles. , 2006, Occupational medicine.

[37]  Mark R Wiesner,et al.  Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. , 2006, Nano letters.

[38]  S. Schürch,et al.  Interaction of fine particles and nanoparticles with red blood cells visualized with advanced microscopic techniques. , 2006, Environmental science & technology.

[39]  Arezou A Ghazani,et al.  Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. , 2006, Nano letters.

[40]  Atul Mehta,et al.  Lysosomal Storage Disorders , 2005 .

[41]  T. Xia,et al.  Toxic Potential of Materials at the Nanolevel , 2006, Science.

[42]  W. Ou,et al.  Photoactivation of quantum dot fluorescence following endocytosis. , 2005, Nano letters.

[43]  Wolfgang Kreyling,et al.  Ultrafine Particles Cross Cellular Membranes by Nonphagocytic Mechanisms in Lungs and in Cultured Cells , 2005, Environmental health perspectives.

[44]  K. O'Byrne,et al.  Activation of p38 MAP kinase by asbestos in rat mesothelial cells is mediated by oxidative stress. , 2004, American journal of physiology. Lung cellular and molecular physiology.

[45]  Xuejun J Yin,et al.  Suppression of cell-mediated immune responses to listeria infection by repeated exposure to diesel exhaust particles in brown Norway rats. , 2004, Toxicological sciences : an official journal of the Society of Toxicology.

[46]  I. Zuhorn,et al.  Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. , 2004, The Biochemical journal.

[47]  C. Streffer,et al.  Effects of Serum Starvation on Radiosensitivity, Proliferation and Apoptosis in Four Human Tumor Cell Lines with Different p53 Status , 2003, Strahlentherapie und Onkologie.

[48]  J. Matthew Mauro,et al.  Long-term multiple color imaging of live cells using quantum dot bioconjugates , 2003, Nature Biotechnology.

[49]  J. Paulauskis,et al.  Endocytosis of ultrafine particles by A549 cells. , 2001, American journal of respiratory cell and molecular biology.

[50]  J. Hogg,et al.  The effect of repeated exposure to particulate air pollution (PM10) on the bone marrow. , 2001, American journal of respiratory and critical care medicine.

[51]  M. Saraste,et al.  FEBS Lett , 2000 .

[52]  F. Kruse,et al.  Inhibition of lysosomal degradative functions in RPE cells by a retinoid component of lipofuscin. , 1999, Investigative ophthalmology & visual science.

[53]  G. Adams,et al.  Effect of serum starvation on expression and phosphorylation of PKC‐α and p53 in V79 cells: Implications for cell death , 1999, International journal of cancer.

[54]  J. Swanson,et al.  Different fates of phagocytosed particles after delivery into macrophage lysosomes , 1996, The Journal of cell biology.

[55]  B. Lehnert,et al.  Correlation between particle size, in vivo particle persistence, and lung injury. , 1994, Environmental health perspectives.

[56]  A. Seidel,et al.  Loss of cathepsin B activity in alveolar macrophages after in vitro quartz phagocytosis. , 1993, Journal of toxicology and environmental health.

[57]  U. Brunk,et al.  Lysosomal enzyme leakage during the hypoxanthine/xanthine oxidase reaction , 1988, Virchows Archiv. B, Cell pathology including molecular pathology.

[58]  J. August,et al.  A kinetic analysis of biosynthesis and localization of a lysosome-associated membrane glycoprotein. , 1986, Archives of biochemistry and biophysics.

[59]  A. Zetterberg,et al.  Kinetic analysis of regulatory events in G1 leading to proliferation or quiescence of Swiss 3T3 cells. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[60]  D. V. Cohn,et al.  The degradation of proparathormone and parathormone by parathyroid and liver cathepsin B. , 1979, The Journal of biological chemistry.

[61]  A. Zetterberg,et al.  The effect of serum starvation on DNA, RNA and protein synthesis during interphase in L-cells. , 1969, Experimental cell research.