Acoustic metamaterials with broadband and wide-angle impedance matching

We propose a general approach to design broadband and wide-angle impedance-matched acoustic metamaterials. Such an unusual acoustic impedance matching characteristic can be well explained by using a spatially dispersive effective medium theory. For demonstrations, we used silicone rubber, which has a huge impedance contrast with water, to design one- and two-dimensional acoustic structures which are almost perfectly impedance matched to water for a wide range of incident angles and in a broad frequency band. Our work opens up an approach to realize extraordinary acoustic impedance matching properties via metamaterial-design techniques.

[1]  P. Sheng,et al.  Hybrid elastic solids. , 2011, Nature materials.

[2]  B. Djafari-Rouhani,et al.  Acoustic band structure of periodic elastic composites. , 1993, Physical review letters.

[3]  Sam-Hyeon Lee,et al.  Acoustic metamaterial with negative density , 2009 .

[4]  P A Deymier,et al.  Experimental and theoretical evidence for the existence of absolute acoustic band gaps in two-dimensional solid phononic crystals. , 2001, Physical review letters.

[5]  Chunguang Xia,et al.  Broadband acoustic cloak for ultrasound waves. , 2010, Physical review letters.

[6]  Sam-Hyeon Lee,et al.  Composite acoustic medium with simultaneously negative density and modulus. , 2010, Physical review letters.

[7]  Y. Wang,et al.  Accessing the exceptional points of parity-time symmetric acoustics , 2016, Nature Communications.

[8]  Fei Gao,et al.  Topological acoustics. , 2014, Physical review letters.

[9]  C. Sun,et al.  Negative refraction of elastic waves at the deep-subwavelength scale in a single-phase metamaterial , 2014, Nature Communications.

[10]  Sai T. Chu,et al.  Symmetrical and anti-symmetrical coherent perfect absorption for acoustic waves , 2014 .

[11]  N. Mattiucci,et al.  Broadband metamaterial for nonresonant matching of acoustic waves , 2012, Scientific Reports.

[12]  Yi S. Ding,et al.  A broadband acoustic metamaterial with impedance matching layer of gradient index , 2017 .

[13]  Jie Luo,et al.  Illusion optics via one-dimensional ultratransparent photonic crystals with shifted spatial dispersions. , 2017, Optics express.

[14]  Ying Wu,et al.  Elastic metamaterials with simultaneously negative effective shear modulus and mass density. , 2011, Physical review letters.

[15]  Abdoulaye Ba,et al.  Soft porous silicone rubbers with ultra-low sound speeds in acoustic metamaterials , 2017, Scientific Reports.

[16]  Ping Sheng,et al.  Subwavelength total acoustic absorption with degenerate resonators , 2015, 1509.03711.

[17]  Chao Tian,et al.  Implementation of dispersion-free slow acoustic wave propagation and phase engineering with helical-structured metamaterials , 2016, Nature Communications.

[18]  F. J. García de abajo,et al.  Anisotropic metamaterials for full control of acoustic waves. , 2012, Physical review letters.

[19]  G. Lerosey,et al.  Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials , 2015, Nature.

[20]  J. J. Park,et al.  Giant acoustic concentration by extraordinary transmission in zero-mass metamaterials. , 2013, Physical review letters.

[21]  Andrea Alù,et al.  Floquet topological insulators for sound , 2015, Nature Communications.

[22]  Weipeng Tang,et al.  Total transmission of airborne sound by impedance-matched ultra-thin metasurfaces , 2017 .

[23]  Jie Luo,et al.  Photonic crystals with broadband, wide-angle, and polarization-insensitive transparency. , 2016, Optics letters.

[24]  Z. Q. Zhang,et al.  The emergence, coalescence and topological properties of multiple exceptional points and their experimental realization , 2015, 1509.06886.

[25]  P. Sheng,et al.  Dark acoustic metamaterials as super absorbers for low-frequency sound , 2012, Nature Communications.

[26]  P. Sheng,et al.  Acoustic metasurface with hybrid resonances. , 2014, Nature materials.

[27]  Chunyin Qiu,et al.  Metamaterial with simultaneously negative bulk modulus and mass density. , 2007, Physical review letters.

[28]  N. Fang,et al.  Ultrasonic metamaterials with negative modulus , 2006, Nature materials.

[29]  S. Cummer,et al.  Tapered labyrinthine acoustic metamaterials for broadband impedance matching , 2013 .

[30]  Y. Cheng,et al.  Ultra-sparse metasurface for high reflection of low-frequency sound based on artificial Mie resonances. , 2015, Nature materials.

[31]  Ying Wu,et al.  High transmission acoustic focusing by impedance-matched acoustic meta-surfaces , 2016 .

[32]  R. Fleury,et al.  Metamaterial buffer for broadband non-resonant impedance matching of obliquely incident acoustic waves. , 2014, The Journal of the Acoustical Society of America.

[33]  S. Cummer,et al.  Three-dimensional broadband omnidirectional acoustic ground cloak. , 2014, Nature materials.

[34]  Yun Lai,et al.  Acoustic coherent perfect absorbers , 2014 .

[35]  Acoustic Type-II Weyl Nodes from Stacking Dimerized Chains. , 2016, Physical review letters.

[36]  M. Torres,et al.  ULTRASONIC BAND GAP IN A PERIODIC TWO-DIMENSIONAL COMPOSITE , 1998 .

[37]  C. Aristégui,et al.  Soft 3D acoustic metamaterial with negative index. , 2015, Nature materials.

[38]  Bin Liang,et al.  Convert Acoustic Resonances to Orbital Angular Momentum. , 2016, Physical review letters.

[39]  S. Cummer,et al.  One path to acoustic cloaking , 2007 .

[40]  Jiuyang Lu,et al.  Observation of topological valley transport of sound in sonic crystals , 2016, Nature Physics.

[41]  Xu Ni,et al.  Surface phononic graphene. , 2016, Nature materials.

[42]  Xiaobo Yin,et al.  Experimental demonstration of an acoustic magnifying hyperlens. , 2009, Nature materials.

[43]  Nicholas X. Fang,et al.  Anisotropic Complementary Acoustic Metamaterial for Canceling out Aberrating Layers , 2014 .

[44]  Jensen Li,et al.  Double-negative acoustic metamaterial. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  Bin Liang,et al.  Broadband field rotator based on acoustic metamaterials , 2014 .

[46]  P. Sheng,et al.  Coupled membranes with doubly negative mass density and bulk modulus. , 2013, Physical review letters.

[47]  C. T. Chan,et al.  Ultratransparent Media and Transformation Optics with Shifted Spatial Dispersions. , 2016, Physical review letters.

[48]  John H. Page,et al.  Superabsorption of acoustic waves with bubble metascreens , 2015 .

[49]  P. Johnson,et al.  Effective impedance boundary optimization and its contribution to dipole radiation and radiation pattern control , 2014, Nature Communications.

[50]  T. Brunet,et al.  Soft Acoustic Metamaterials , 2013, Science.

[51]  Steven A. Cummer,et al.  Design and measurements of a broadband two-dimensional acoustic lens , 2011 .

[52]  Manzhu Ke,et al.  Valley vortex states in sonic crystals , 2016, 2016 Progress in Electromagnetic Research Symposium (PIERS).

[53]  V. M. García-Chocano,et al.  Negative refraction and energy funneling by hyperbolic materials: an experimental demonstration in acoustics. , 2014, Physical review letters.

[54]  Q. Wei,et al.  Topological Creation of Acoustic Pseudospin Multipoles in a Flow-Free Symmetry-Broken Metamaterial Lattice. , 2017, Physical review letters.

[55]  P. Sheng,et al.  Locally resonant sonic materials , 2000, Science.

[56]  P. Sheng,et al.  Acoustic metamaterials: From local resonances to broad horizons , 2016, Science Advances.

[57]  Jensen Li,et al.  Extreme acoustic metamaterial by coiling up space. , 2012, Physical review letters.

[58]  P. Sheng,et al.  Polarization bandgaps and fluid-like elasticity in fully solid elastic metamaterials , 2016, Nature Communications.

[59]  Xu Ni,et al.  Acoustic topological insulator and robust one-way sound transport , 2015, Nature Physics.

[60]  B. Manzanares-Martínez,et al.  Transverse elastic waves in superlattices: The Brewster acoustic angle , 2000 .

[61]  Gengkai Hu,et al.  Experimental study on negative effective mass in a 1D mass–spring system , 2008 .

[62]  S. Cummer,et al.  Broadband Acoustic Hyperbolic Metamaterial. , 2015, Physical review letters.

[63]  N. Fang,et al.  Focusing ultrasound with an acoustic metamaterial network. , 2009, Physical review letters.

[64]  P. Sheng,et al.  Membrane-type acoustic metamaterial with negative dynamic mass. , 2008, Physical review letters.

[65]  B. Liang,et al.  An acoustic rectifier. , 2010, Nature materials.

[66]  P. Sheng,et al.  Theoretical requirements for broadband perfect absorption of acoustic waves by ultra-thin elastic meta-films , 2015, Scientific Reports.

[67]  A. Alú,et al.  Controlling sound with acoustic metamaterials , 2016 .