The Relevance of Non-Generic Events in Scale Space Models

In order to investigate the deep structure of Gaussian scale space images, one needs to understand the behaviour of spatial critical points under the influence of blurring. We show how the mathematical framework of catastrophe theory can be used to describe and model the behaviour of critical point trajectories when various different types of generic events, viz. annihilations and creations of pairs of spatial critical points, (almost) coincide. Although such events are non-generic in mathematical sense, they are not unlikely to be encountered in practice due to numerical limitations. Furthermore, the behaviour of these trajectories leads to the observation that fine-to-coarse tracking of critical points doesn't suffice, since they can form closed loops in scale space. The modelling of the trajectories include these loops. We apply the theory to an artificial image and a simulated MR image and show the occurrence of the described behaviour.

[1]  R. Thom Stabilité structurelle et morphogenèse , 1974 .

[2]  Vladimir I. Arnold,et al.  Dynamical systems. VI, Singularity theory , 1993 .

[3]  Joachim Weickert,et al.  Scale-Space Theories in Computer Vision , 1999, Lecture Notes in Computer Science.

[4]  Luc Florack,et al.  Logical Filtering in Scale Space , 2002 .

[5]  Atsushi Imiya,et al.  On the History of Gaussian Scale-Space Axiomatics , 1997, Gaussian Scale-Space Theory.

[6]  Robert Rosen,et al.  Structural stability and morphogenesis , 1977 .

[7]  Luc Florack,et al.  The Topological Structure of Scale-Space Images , 2000, Journal of Mathematical Imaging and Vision.

[8]  James Damon,et al.  Local Morse Theory for Gaussian Blurred Functions , 1997, Gaussian Scale-Space Theory.

[9]  David H. Eberly,et al.  Ridges for image analysis , 1994, Journal of Mathematical Imaging and Vision.

[10]  Peter Johansen,et al.  Gaussian Scale-Space Theory , 1997, Computational Imaging and Vision.

[11]  A. H. Saldena Dynamic Scale-Space Paradigms , 2003 .

[12]  Joachim H. Rieger,et al.  Generic properties of edges and “corners” on smooth greyvalue surfaces , 1992, Biological Cybernetics.

[13]  Rolf D. Henkel,et al.  Segmentation in Scale Space , 1995, CAIP.

[14]  Mads Nielsen,et al.  Branch Points in One-Dimensional Gaussian Scale Space , 2000, Journal of Mathematical Imaging and Vision.

[15]  P. Giblin,et al.  Curves and Singularities , 1984 .

[16]  Max A. Viergever,et al.  Linear scale-space , 1994, Journal of Mathematical Imaging and Vision.

[17]  Max A. Viergever,et al.  The Gaussian scale-space paradigm and the multiscale local jet , 1996, International Journal of Computer Vision.

[18]  M. Slemrod,et al.  DYNAMICS OF FIRST ORDER PHASE TRANSITIONS , 1984 .

[19]  Stiliyan Kalitzin Topological Numbers and Singularities , 1997, Gaussian Scale-Space Theory.

[20]  Luc Florack,et al.  Calculations on Critical Points under Gaussian Blurring , 1999, Scale-Space.

[21]  V. Arnold Dynamical systems V. Bifurcation theory and catastrophe theory , 1994 .

[22]  Robert Gilmore,et al.  Catastrophe Theory for Scientists and Engineers , 1981 .

[23]  Ole Fogh Olsen,et al.  Multi-Scale Watershed Segmentation , 1997, Gaussian Scale-Space Theory.

[24]  James J. Clark Singularity Theory and Phantom Edges in Scale Space , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Peter Johansen Local Analysis of Image Scale Space , 1997, Gaussian Scale-Space Theory.

[26]  Stephen Smale,et al.  Review: E. C. Zeeman, Catastrophe theory: Selected papers, 1972–1977 , 1978 .

[27]  V. Arnold,et al.  Ordinary Differential Equations , 1973 .

[28]  Stephen M. Pizer,et al.  A Multiresolution Hierarchical Approach to Image Segmentation Based on Intensity Extrema , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  Max A. Viergever,et al.  Scale Space Hierarchy , 2003, Journal of Mathematical Imaging and Vision.

[30]  N.-Y. Zhao,et al.  Theory on the method of determination of view-point and field of vision during observation and measurement of figure , 1985 .

[31]  Tony Lindeberg,et al.  Detecting salient blob-like image structures and their scales with a scale-space primal sketch: A method for focus-of-attention , 1993, International Journal of Computer Vision.

[32]  Masaki Hilaga,et al.  Topological Modeling for Visualization , 1997 .

[33]  J. Koenderink,et al.  Cartesian differential invariants in scale-space , 1993, Journal of Mathematical Imaging and Vision.

[34]  James N. Damon,et al.  Generic transitions of relative critical sets in parametrized families with applications to image analysis , 1999 .

[35]  Vladimir Igorevich Arnold,et al.  Geometrical Methods in the Theory of Ordinary Differential Equations , 1983 .

[36]  Toshikazu Wada,et al.  Scale-space tree and its hierarchy , 1990, [1990] Proceedings. 10th International Conference on Pattern Recognition.

[37]  Glynn P. Robinson,et al.  Scale and segmentation of grey-level images using maximum gradient paths , 1991, Image and Vision Computing.

[38]  Tony Lindeberg,et al.  Scale-space behaviour of local extrema and blobs , 1992, Journal of Mathematical Imaging and Vision.

[39]  Alan C. Evans,et al.  BrainWeb: Online Interface to a 3D MRI Simulated Brain Database , 1997 .

[40]  J. Damon Local Morse Theory for Solutions to the Heat Equation and Gaussian Blurring , 1995 .

[41]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[42]  Max A. Viergever,et al.  A Computational Method for Segmenting Topological Point-Sets and Application to Image Analysis , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[43]  Luc Florack,et al.  Image Structure , 1997, Computational Imaging and Vision.

[44]  Luc Florack,et al.  Hierarchical pre-segmentation without prior knowledge , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[45]  Max A. Viergever,et al.  Topological Numbers and Singularities in Scalar Images: Scale-Space Evolution Properties , 1998, Journal of Mathematical Imaging and Vision.

[46]  Ole Fogh Olsen Generic image structure , 2000, Technical report / University of Copenhagen / Datalogisk institut.

[47]  Peter Johansen,et al.  On the classification of toppoints in scale space , 2005, Journal of Mathematical Imaging and Vision.

[48]  L. Florack,et al.  The application of catastrophe theory to image analysis , 2001 .

[49]  Simon R. Arridge,et al.  Application of the extremum stack to neurological MRI , 1998, IEEE Transactions on Medical Imaging.

[50]  M. Deakin Catastrophe theory. , 1977, Science.

[51]  Michael Kerckhove,et al.  Scale-Space and Morphology in Computer Vision , 2001, Lecture Notes in Computer Science 2106.

[52]  Luc Florack,et al.  Hierarchical Pre-Segmentation without Prior Knowledge , 2001, ICCV.

[53]  Joachim H. Rieger,et al.  Topographical Properties of Generic Images , 1997, International Journal of Computer Vision.

[54]  T. W. Barrett,et al.  Catastrophe Theory, Selected Papers 1972-1977 , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[55]  Max A. Viergever,et al.  General intensity transformations and differential invariants , 1994, Journal of Mathematical Imaging and Vision.

[56]  Lewis D. Griffin Critical Point Events in Affine Scale-Space , 1997, Gaussian Scale-Space Theory.

[57]  RESOLUTION OF SINGULARITIES OF CONVOLUTIONS WITH THE GAUSSIAN KERNEL , 1999 .

[58]  Max A. Viergever,et al.  Scale-Space Theory in Computer Vision , 1997 .

[59]  J. Argyris,et al.  Fractal space, cosmic strings and spontaneous symmetry breaking , 2001 .

[60]  Nicholas Ayache,et al.  Medical Image Analysis: Progress over Two Decades and the Challenges Ahead , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[61]  Peter Johansen Local Analysis of Scale Space , 1996 .

[62]  E. Maslov,et al.  Dynamics of first-order phase transitions in the φ4–φ6 model caused by the parametric instability of the metastable vacuum , 2001 .

[63]  J. Koenderink The structure of images , 2004, Biological Cybernetics.

[64]  Yung-chen Lu Singularity Theory and an Introduction to Catastrophe Theory , 1980 .

[65]  C. Chitti Babu,et al.  On feature extraction in pattern recognition , 1972, Inf. Sci..

[66]  Atsushi Imiya,et al.  Linear Scale-Space has First been Proposed in Japan , 1999, Journal of Mathematical Imaging and Vision.

[67]  Mads Nielsen,et al.  Generic Events for the Gradient Squared with Application to Multi-Scale Segmentation , 1997, Scale-Space.

[68]  Alan C. F. Colchester,et al.  Superficial and deep structure in linear diffusion scale space: isophotes, critical points and separatrices , 1995, Image Vis. Comput..

[69]  James Damon,et al.  Generic Properties of Solutions to Partial Differential Equations , 1997 .

[70]  Joachim H. Rieger Generic evolutions of edges on families of diffused greyvalue surfaces , 2005, Journal of Mathematical Imaging and Vision.

[71]  Max A. Viergever,et al.  Scale and the differential structure of images , 1992, Image Vis. Comput..

[72]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.