A general upper bound in extremal theory of sequences
暂无分享,去创建一个
[1] H. Davenport,et al. A Combinatorial Problem Connected with Differential Equations , 1965 .
[2] E. Szemerédi. On a problem of Davenport and Schinzel , 1974 .
[3] Micha Sharir,et al. Nonlinearity of davenport—Schinzel sequences and of generalized path compression schemes , 1986, FOCS.
[4] Micha Sharir,et al. Almost linear upper bounds on the length of general davenport—schinzel sequences , 1987, Comb..
[5] Péter Komjáth,et al. A simplified construction of nonlinear Davenport-Schinzel sequences , 1988, J. Comb. Theory, Ser. A.
[6] Micha Sharir,et al. Planar realizations of nonlinear davenport-schinzel sequences by segments , 1988, Discret. Comput. Geom..
[7] Micha Sharir,et al. Sharp upper and lower bounds on the length of general Davenport-Schinzel sequences , 2015, J. Comb. Theory, Ser. A.
[8] Zoltán Füredi,et al. Davenport-Schinzel theory of matrices , 1992, Discret. Math..
[9] Martin Klazar,et al. Generalized Davenport-Schinzel sequences with linear upper bound , 1992, Discret. Math..
[10] Martin Klazar,et al. A Linear Upper Bound in Extremal Theory of Sequences , 1994, J. Comb. Theory, Ser. A.