Measuring cosmic density of neutral hydrogen via stacking the DINGO-VLA data

We use the 21-cm emission-line data from the Deep Investigation of Neutral Gas Origin-Very Large Array (DINGO-VLA) project to study the atomic hydrogen gas H i of the Universe at redshifts z < 0.1. Results are obtained using a stacking analysis, combining the H i signals from 3622 galaxies extracted from 267 VLA pointings in the G09 field of the Galaxy and Mass Assembly Survey (GAMA). Rather than using a traditional one-dimensional spectral stacking method, a three-dimensional cubelet stacking method is used to enable deconvolution and the accurate recovery of average galaxy fluxes from this high-resolution interferometric data set. By probing down to galactic scales, this experiment also overcomes confusion corrections that have been necessary to include in previous single-dish studies. After stacking and deconvolution, we obtain a 30σ H i mass measurement from the stacked spectrum, indicating an average H i mass of ${\rm{M_{\rm{{H}\,\small{I}}}}}=(1.67\pm 0.18)\times 10^{9}~{\rm{{\rm M}_{\odot }}}$. The corresponding cosmic density of neutral atomic hydrogen is ${\rm{\Omega _{\rm{{H}\,\small{I}}}}}=(0.38\pm 0.04)\times 10^{-3}$ at redshift of z = 0.051. These values are in good agreement with earlier results, implying there is no significant evolution of $\Omega _{\rm{{H}\,\small{I}}}$ at lower redshifts.

[1]  M. Meyer,et al.  Interferometric cubelet stacking to recover H i emission from distant galaxies , 2021, 2101.06928.

[2]  M. Zwaan,et al.  The Arecibo Ultra-Deep Survey , 2020, Monthly Notices of the Royal Astronomical Society.

[3]  J. Chengalur,et al.  H i 21-centimetre emission from an ensemble of galaxies at an average redshift of one , 2020, Nature.

[4]  A. Bolatto,et al.  The evolution of neutral hydrogen over the past 11 Gyr via H i 21 cm absorption , 2020, 2008.07578.

[5]  M. Verheijen,et al.  BUDHiES IV: Deep 21-cm neutral Hydrogen, optical, and UV imaging data of Abell 963 and Abell 2192 at z ≃ 0.2 , 2020, Monthly Notices of the Royal Astronomical Society.

[6]  P. Goldsmith,et al.  Tracing the Formation of Molecular Clouds in a Low-metallicity Galaxy: An H i Narrow Self-absorption Survey of the Large Magellanic Cloud , 2019, The Astrophysical Journal.

[7]  J. Bagla,et al.  Atomic Hydrogen in Star-forming Galaxies at Intermediate Redshifts , 2019, The Astrophysical Journal.

[8]  R. Morganti,et al.  An accurate low-redshift measurement of the cosmic neutral hydrogen density , 2019, Monthly Notices of the Royal Astronomical Society.

[9]  M. Bershady,et al.  CHILES: H  imorphology and galaxy environment atz = 0.12 andz = 0.17 , 2018, Monthly Notices of the Royal Astronomical Society.

[10]  F. Walter,et al.  The CO Luminosity Density at High-z (COLDz) Survey: A Sensitive, Large-area Blind Search for Low-J CO Emission from Cold Gas in the Early Universe with the Karl G. Jansky Very Large Array , 2018, The Astrophysical Journal.

[11]  A. Robotham,et al.  Shark: introducing an open source, free, and flexible semi-analytic model of galaxy formation , 2018, Monthly Notices of the Royal Astronomical Society.

[12]  C. Willmer The Absolute Magnitude of the Sun in Several Filters , 2018, The Astrophysical Journal Supplement Series.

[13]  S. Bamford,et al.  Galaxy And Mass Assembly: The G02 field, Herschel-ATLAS target selection and data release 3 , 2018 .

[14]  R. Giovanelli,et al.  The ALFALFA H I mass function: a dichotomy in the low-mass slope and a locally suppressed `knee' mass , 2018, 1802.00053.

[15]  O. Fèvre,et al.  Neutral hydrogen (H i) gas content of galaxies at z ≈ 0.32 , 2017, 1709.07596.

[16]  A. Robotham,et al.  Tracing Hi Beyond the Local Universe , 2017, Publications of the Astronomical Society of Australia.

[17]  D. Turnshek,et al.  The statistical properties of neutral gas at z < 1.65 from UV measurements of Damped Lyman Alpha systems , 2017, 1704.01634.

[18]  P. Hopkins,et al.  MUFASA: Galaxy star formation, gas, and metal properties across cosmic time , 2016, 1610.01626.

[19]  R. Garnett,et al.  Statistical properties of damped Lyman-alpha systems from Sloan Digital Sky Survey DR12 , 2016, 1610.01165.

[20]  R. Perley,et al.  An Accurate Flux Density Scale from 50 MHz to 50 GHz , 2016, 1609.05940.

[21]  David Elbaz,et al.  ALMA SPECTROSCOPIC SURVEY IN THE HUBBLE ULTRA DEEP FIELD: SURVEY DESCRIPTION , 2016, 1607.06768.

[22]  M. Bershady,et al.  HIGHEST REDSHIFT IMAGE OF NEUTRAL HYDROGEN IN EMISSION: A CHILES DETECTION OF A STARBURSTING GALAXY AT z = 0.376 , 2016, 1606.00013.

[23]  M. Colless,et al.  GMRT observation of neutral atomic hydrogen gas in the COSMOS field at $z \sim 0.37$ , 2016, 1605.02006.

[24]  India.,et al.  THE GAS MASS OF STAR-FORMING GALAXIES AT z ≈ 1.3 , 2016, 1601.07909.

[25]  J. Xavier Prochaska,et al.  THE H i CONTENT OF THE UNIVERSE OVER THE PAST 10 GYR , 2016, 1601.01691.

[26]  Martha P. Haynes,et al.  Extragalactic HI surveys , 2015, 1510.04660.

[27]  J. A. Vázquez-Mata,et al.  Galaxy and mass assembly (GAMA): End of survey report and data release 2 , 2015, 1506.08222.

[28]  M. Zwaan,et al.  A blind HI Mass Function from the Arecibo Ultra-Deep Survey (AUDS) , 2015, 1506.05931.

[29]  C. Power,et al.  The H i mass function as a probe of photoionization feedback on low-mass galaxy formation , 2015, 1506.02736.

[30]  J. Prochaska,et al.  The Neutral Hydrogen Cosmological Mass Density at z = 5 , 2015, Proceedings of the International Astronomical Union.

[31]  A. Hopkins,et al.  Galaxy And Mass Assembly (GAMA): AUTOZ spectral redshift measurements, confidence and errors. , 2014, 1404.2626.

[32]  H. Rix,et al.  A MOLECULAR LINE SCAN IN THE HUBBLE DEEP FIELD NORTH , 2013, 1312.6364.

[33]  A. M. Swinbank,et al.  Which galaxies dominate the neutral gas content of the Universe , 2013, 1310.4178.

[34]  R. Somerville,et al.  Evolution of the atomic and molecular gas content of galaxies , 2013, 1308.6764.

[35]  M. Zwaan,et al.  Neutral atomic hydrogen (H i) gas evolution in field galaxies at z ∼ 0.1 and ∼0.2 , 2013, 1308.1462.

[36]  D. A. García-Hernández,et al.  THE TENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST SPECTROSCOPIC DATA FROM THE SDSS-III APACHE POINT OBSERVATORY GALACTIC EVOLUTION EXPERIMENT , 2013, 1307.7735.

[37]  O. University,et al.  The ESO UVES advanced data products quasar sample: II. Cosmological evolution of the neutral gas mass density , 2013, 1307.0602.

[38]  B. Boyle,et al.  Detection of H i in distant galaxies using spectral stacking , 2013, 1305.1968.

[39]  Tom Oosterloo,et al.  A Pilot for a VLA HI Deep Field , 2013, 1303.2659.

[40]  Australian National University,et al.  Galaxy And Mass Assembly (GAMA): Spectroscopic analysis , 2013, 1301.7127.

[41]  Scott Croom,et al.  The WiggleZ Dark Energy Survey: Final data release and cosmological results , 2012, 1210.2130.

[42]  E. Malanushenko,et al.  Column density distribution and cosmological mass density of neutral gas: Sloan Digital Sky Survey-III Data Release 9 , 2012, 1210.1213.

[43]  R. Braun COSMOLOGICAL EVOLUTION OF ATOMIC GAS AND IMPLICATIONS FOR 21 cm H i ABSORPTION , 2012, 1202.1840.

[44]  S. Bamford,et al.  Galaxy and Mass Assembly (GAMA): ugriz galaxy luminosity functions , 2011, 1111.0166.

[45]  T. Cornwell,et al.  A multi-scale multi-frequency deconvolution algorithm for synthesis imaging in radio interferometry , 2011, 1106.2745.

[46]  Durham,et al.  Cosmic evolution of the atomic and molecular gas contents of galaxies , 2011, 1105.2294.

[47]  M. Zwaan,et al.  DEEP 21 cm H i OBSERVATIONS AT z ≈ 0.1: THE PRECURSOR TO THE ARECIBO ULTRA DEEP SURVEY , 2010, 1011.0877.

[48]  S. Bamford,et al.  Galaxy and Mass Assembly (GAMA): survey diagnostics and core data release , 2010, 1009.0614.

[49]  Martha P. Haynes,et al.  THE ARECIBO LEGACY FAST ALFA SURVEY. X. THE H i MASS FUNCTION AND FROM THE 40% ALFALFA SURVEY , 2010, 1008.5107.

[50]  L. Cowie,et al.  THE EVOLUTION OF LYMAN LIMIT ABSORPTION SYSTEMS TO REDSHIFT SIX , 2010, 1007.3262.

[51]  S. Driver,et al.  Quantifying cosmic variance , 2010, 1005.2538.

[52]  P. Noterdaeme,et al.  Evolution of the cosmological mass density of neutral gas from Sloan Digital Sky Survey II - Data Release 7 , 2009, 0908.1574.

[53]  C. Baugh,et al.  The redshift evolution of the mass function of cold gas in hierarchical galaxy formation models , 2009, 0908.1396.

[54]  David R. DeBoer,et al.  Australian SKA Pathfinder: A High-Dynamic Range Wide-Field of View Survey Telescope , 2009, Proceedings of the IEEE.

[55]  B. Schmidt,et al.  The H i gas content of galaxies around Abell 370, a galaxy cluster at z= 0.37 , 2009, 0907.1416.

[56]  Justin L. Jonas,et al.  MeerKAT—The South African Array With Composite Dishes and Wide-Band Single Pixel Feeds , 2009, Proceedings of the IEEE.

[57]  O. Lahav,et al.  The 6dF Galaxy Survey: final redshift release (DR3) and southern large-scale structures , 2009, 0903.5451.

[58]  J. Prochaska,et al.  ON THE (NON)EVOLUTION OF H i GAS IN GALAXIES OVER COSMIC TIME , 2008, 0811.2003.

[59]  Robert J. Brunner,et al.  The 2dF-SDSS LRG and QSO Survey: the spectroscopic QSO catalogue , 2008, 0810.4955.

[60]  A. Hopkins,et al.  Linked Evolution of Gas and Star Formation in Galaxies Over Cosmic History , 2008, 0806.0662.

[61]  S. Okamura,et al.  The HI content of star-forming galaxies at z = 0.24 , 2007, astro-ph/0701668.

[62]  R. J. Brunner,et al.  The 2dF-SDSS LRG and QSO (2SLAQ) luminous red galaxy survey , 2006, astro-ph/0607631.

[63]  J. Prochaska,et al.  The UCSD Radio-selected Quasar Survey for Damped Lyα Systems , 2006, astro-ph/0604334.

[64]  A. Hopkins,et al.  On the Normalization of the Cosmic Star Formation History , 2006, astro-ph/0601463.

[65]  J. Prochaska,et al.  The SDSS Damped Lyα Survey: Data Release 3 , 2005, astro-ph/0508361.

[66]  E. al.,et al.  The Arecibo Legacy Fast ALFA Survey. I. Science Goals, Survey Design, and Strategy , 2005, astro-ph/0508301.

[67]  M. Zwaan,et al.  The HIPASS catalogue: ΩH i and environmental effects on the H i mass function of galaxies , 2005, astro-ph/0502257.

[68]  V. Springel,et al.  Massive Galaxies and Extremely Red Objects at z = 1-3 in Cosmological Hydrodynamic Simulations: Near-Infrared Properties , 2005, astro-ph/0502001.

[69]  C. Carilli,et al.  Science with the Square Kilometer Array , 2004, astro-ph/0409274.

[70]  A. M. Hopkins,et al.  On the Evolution of Star-forming Galaxies , 2004, astro-ph/0407170.

[71]  E. al.,et al.  The HIPASS catalogue - I. Data presentation , 2004, astro-ph/0406384.

[72]  J. Prochaska,et al.  Metallicity Evolution of Damped Lyα Systems in ΛCDM Cosmology , 2002, astro-ph/0203524.

[73]  I. Hook,et al.  The corals survey I: new estimates of the number density and gas content of damped lyman alpha systems free from dust bias , 2001, astro-ph/0109205.

[74]  M. Wieringa,et al.  HI in Abell 3128 , 2001, astro-ph/0104331.

[75]  J. Tonry,et al.  The Surface Brightness Fluctuation Survey of Galaxy Distances. II. Local and Large-Scale Flows , 1999, astro-ph/9907062.

[76]  Michael J. Kurtz,et al.  The Updated Zwicky Catalog (UZC) , 1999, astro-ph/9904265.

[77]  R. Sault,et al.  The large‐scale HI structure of the Small Magellanic Cloud , 1999 .

[78]  R. Wechsler,et al.  The nature of high-redshift galaxies , 1998, astro-ph/0006364.

[79]  J. Surdej,et al.  Gravitational lensing by damped Ly-alpha absorbers , 1997 .

[80]  M. Dickinson,et al.  Cosmic Star-Formation History , 1996, 1403.0007.

[81]  A. Fruchter,et al.  HIGH-REDSHIFT GALAXIES IN THE HUBBLE DEEP FIELD : COLOUR SELECTION AND STAR FORMATION HISTORY TO Z 4 , 1996, astro-ph/9607172.

[82]  O. Fèvre,et al.  The Canada-France Redshift Survey: The Luminosity Density and Star Formation History of the Universe to z ~ 1 , 1996, astro-ph/9601050.

[83]  R. Perley Jansky Very Large Array Primary Beam Characteristics , 2016 .

[84]  L. Chemin,et al.  Panoramic Radio Astronomy: Wide-field 1-2 GHz research on galaxy evolution , 2009 .

[85]  B. Efron The jackknife, the bootstrap, and other resampling plans , 1987 .