A Tutorial on Kam Theory

This is a tutorial on some of the main ideas in KAM theory. The goal is to present the background and to explain and compare somewhat informally some of the main methods of proof. It is an expanded version of the lectures given by the author in the Summer Research Institute on Smooth Ergodic Theory Seattle, 1999. The style is pedagogical and expository and it only aims to be an introduction to the primary literature. It does not aim to be a systematic survey nor to present full proofs.

[1]  Donald E. Knuth The Art of Computer Programming 2 / Seminumerical Algorithms , 1971 .

[2]  On the Validity of the Conjugate Pairing Rule for Lyapunov Exponents , 1998, chao-dyn/9803011.

[3]  Zhihong Xia Existence of invariant tori in volume-preserving diffeomorphisms , 1992, Ergodic Theory and Dynamical Systems.

[4]  Y. Katznelson,et al.  The differentiability of the conjugation of certain diffeomorphisms of the circle , 1989, Ergodic Theory and Dynamical Systems.

[5]  R. Llave,et al.  Smooth conjugacy and S-R-B measures for uniformly and non-uniformly hyperbolic systems , 1992 .

[6]  J. Zukas Introduction to the Modern Theory of Dynamical Systems , 1998 .

[7]  V. Arnold SMALL DENOMINATORS AND PROBLEMS OF STABILITY OF MOTION IN CLASSICAL AND CELESTIAL MECHANICS , 1963 .

[8]  D. Salamon,et al.  Kolmogorov–Arnold–Moser theorem , 2019, 100 Years of Math Milestones.

[9]  I. Percival A variational principle for invariant tori of fixed frequency , 1979 .

[10]  G. Benettin,et al.  Numerical investigations on a chain of weakly coupled rotators in the light of classical perturbation theory , 1985 .

[11]  S. Aubry The twist map, the extended Frenkel-Kontorova model and the devil's staircase , 1983 .

[12]  Donald Ervin Knuth,et al.  The Art of Computer Programming, Volume II: Seminumerical Algorithms , 1970 .

[13]  V. Arnold,et al.  Mathematical aspects of classical and celestial mechanics , 1997 .

[14]  André Deprit,et al.  Canonical transformations depending on a small parameter , 1969 .

[15]  J. Fröhlich,et al.  Periodic solutions of some infinite-dimensional Hamiltonian systems associated with non-linear partial difference equations I , 1988 .

[16]  D. Schmidt Computing the Motion of the Moon Accurately , 1995 .

[17]  Gene H. Golub,et al.  Matrix computations , 1983 .

[18]  A. Davie,et al.  The critical function for the semistandard map , 1994 .

[19]  Hassler Whitney,et al.  Differentiable Functions Defined in Closed Sets. I , 1934 .

[20]  Helmut Rüssmann,et al.  On optimal estimates for the solutions of linear partial differential equations of first order with constant coefficients on the torus , 1975 .

[21]  Jean Bourgain,et al.  Anderson localization for Schrödinger operators on Z2 with quasi-periodic potential , 2002 .

[22]  Harold Marston Morse A fundamental class of geodesics on any closed surface of genus greater than one , 1924 .

[23]  T. M. Seara,et al.  A geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem: heuristics and rigorous verification on a model. , 2003 .

[24]  J. Fröhlich,et al.  Localization in disordered, nonlinear dynamical systems , 1986 .

[25]  Willard L. Miranker,et al.  Self-Validating Numerics for Function Space Problems , 1984 .

[26]  E. Zehnder Moser's implicit function theorem in the framework of analytic smoothing , 1976 .

[27]  Helmut Rüssmann,et al.  Number Theory and Dynamical Systems: Non-degeneracy in the perturbation theory of integrable dynamical systems , 1989 .

[28]  D. Braess,et al.  On the numerical treatment of a small divisor problem , 1982 .

[29]  Ricardo Pérez Marco,et al.  Sur les dynamiques holomorphes non linéarisables et une conjecture de V. I. Arnold , 1993 .

[30]  M. Sevryuk The finite-dimensional reversible KAM theory , 1998 .

[31]  J. Yoccoz,et al.  Conjugaison différentiable des difféomorphismes du cercle dont le nombre de rotation vérifie une condition diophantienne , 1984 .

[32]  Verzekeren Naar Sparen,et al.  Cambridge , 1969, Humphrey Burton: In My Own Time.

[33]  G. Benettin,et al.  Nekhoroshev-Stability of Elliptic Equilibria of Hamiltonian Systems , 1998 .

[34]  A simple proof of a generalization of a theorem by C. L. Siegel , 1977 .

[35]  J. Pöschel On the construction of almost periodic solutions for a nonlinear Schrödinger equation , 2002, Ergodic Theory and Dynamical Systems.

[36]  P. Gérard,et al.  Opérateurs pseudo-différentiels et théorème de Nash-Moser , 1991 .

[37]  Henri Poincaré,et al.  New methods of celestial mechanics , 1967 .

[38]  R. Kannan,et al.  Periodic solutions of nonlinear wave equations , 1983 .

[39]  J. Bost Tores invariants des systèmes dynamiques hamiltoniens , 1985 .

[40]  Vladimir Igorevich Arnold,et al.  Geometrical Methods in the Theory of Ordinary Differential Equations , 1983 .

[41]  Àngel Jorba,et al.  On the reducibility of linear differential equations with quasiperiodic coefficients , 1992 .

[42]  N. Haydn On invariant curves under renormalisation , 1990 .

[43]  H. Broer,et al.  A proof of the isoenergetic KAM-theorem from the “ordinary” one , 1991 .

[44]  Ugo Bessi An approach to Arnold's diffusion through the calculus of variations , 1996 .

[45]  Fernando Bertolini,et al.  Le funzioni misurabili di ultrafiltro come elementi di un reticolo lineare numerabilmente completo , 1961 .

[46]  L. Niederman Nonlinear stability around an elliptic equilibrium point in a Hamiltonian system , 1998 .

[47]  J. Schwartz Nonlinear Functional Analysis , 1969 .

[48]  P. Calvez Propriétés générales des applications déviant la verticale , 1989 .

[49]  J. Nash The imbedding problem for Riemannian manifolds , 1956 .

[50]  J. Moser,et al.  An extension of a result by Dinaburg and Sinai on quasi-periodic potentials , 1984 .

[51]  Dario Bambusi,et al.  Nekhoroshev theorem for small amplitude solutions in nonlinear Schrödinger equations , 1999 .

[52]  J. Kovalevsky,et al.  Lectures in celestial mechanics , 1989 .

[53]  J. Mather Destruction of invariant circles , 1988, Ergodic Theory and Dynamical Systems.

[54]  M. Blank Metric properties of minimal solutions of discrete periodical variational problems , 1989 .

[55]  A. Jorba,et al.  On the normal behaviour of partially elliptic lower-dimensional tori of Hamiltonian systems , 1997 .

[56]  C. Simó,et al.  Effective Computations in Celestial Mechanics and Astrodynamics , 1998 .

[57]  Jürgen Pöschel,et al.  Integrability of Hamiltonian systems on cantor sets , 1982 .

[58]  C. Siegel Über die Existenz einer Normalform analytischerHamiltonscher Differentialgleichungen in der Nähe einer Gleichgewichtslösung , 1954 .

[59]  J. Pöschel,et al.  Nekhoroshev estimates for quasi-convex hamiltonian systems , 1993 .

[60]  Giovanni Gallavotti,et al.  TWISTLESS KAM TORI, QUASI FLAT HOMOCLINIC INTERSECTIONS, AND OTHER CANCELLATIONS IN THE PERTURBATION SERIES OF CERTAIN COMPLETELY INTEGRABLE HAMILTONIAN SYSTEMS: A REVIEW , 1993, chao-dyn/9304012.

[61]  A simple proof of a particular case of C. Siegel’s center theorem , 1983 .

[62]  L. Chierchia,et al.  Smooth prime integrals for quasi-integrable Hamiltonian systems , 1982 .

[63]  C. Meunier,et al.  Multiphase Averaging for Classical Systems , 1988 .

[64]  Jean Bourgain,et al.  On nonlinear Schrödinger equations , 1998 .

[65]  Dominique Escande,et al.  Renormalization method for computing the threshold of the large-scale stochastic instability in two degrees of freedom Hamiltonian systems , 1981 .

[66]  Y. Sinai,et al.  THE EXPONENTIAL LOCALIZATION AND STRUCTURE OF THE SPECTRUM FOR 1D QUASI-PERIODIC DISCRETE SCHRÖDINGER OPERATORS , 1991 .

[67]  M. Blank Chaos and order in the multidimensional Frenkel-Kontorova model , 1990 .

[68]  J. Moser,et al.  On a partial differential equation involving the Jacobian determinant , 1990 .

[69]  J. Bourgain On Melnikov’s persistency problem , 1997 .

[70]  I. Percival,et al.  Hamiltonian maps in the complex plane , 1981 .

[71]  Àngel Jorba,et al.  On the Persistence of Lower Dimensional Invariant Tori under Quasi-Periodic Perturbations , 1997 .

[72]  J. Moser On the persistence of pseudo-holomorphic curves on an almost complex torus (with an appendix by Jürgen Pöschel) , 1995 .

[73]  P. Steerenberg,et al.  Targeting pathophysiological rhythms: prednisone chronotherapy shows sustained efficacy in rheumatoid arthritis. , 2010, Annals of the rheumatic diseases.

[74]  S. A. Sherman,et al.  Providence , 1906 .

[75]  A. Kolmogorov On conservation of conditionally periodic motions for a small change in Hamilton's function , 1954 .

[76]  L. Chierchia,et al.  A note on quasi-periodic solutions of some elliptic systems , 1996 .

[77]  P. Lions Generalized Solutions of Hamilton-Jacobi Equations , 1982 .

[78]  Rafael de la Llave,et al.  Planelike minimizers in periodic media , 2001 .

[79]  R. de la Llave,et al.  Accurate Strategies for K.A.M. Bounds and Their Implementation , 1991 .

[80]  R. Krikorian Réductibilité des systèmes produits-croisés à valeurs dans des groupes compacts , 1999 .

[81]  A. Fathi,et al.  Théorème KAM faible et théorie de Mather sur les systèmes lagrangiens , 1997 .

[82]  F. Fass On the Stability of Elliptic Equilibria , 1998 .

[83]  Angel Jorba,et al.  A Methodology for the Numerical Computation of Normal Forms, Centre Manifolds and First Integrals of Hamiltonian Systems , 1999, Exp. Math..

[84]  R. de la Llave,et al.  On the Aubry–Mather Theory in Statistical Mechanics , 1998 .

[85]  Peter Wittwer,et al.  Computer-Assisted Proofs in Analysis and Programming in Logic: A case Study , 1996, SIAM Rev..

[86]  R. Llave,et al.  Canonical perturbation theory of Anosov systems and regularity results for the Livsic cohomology equation , 1986 .

[87]  D. Bambusi,et al.  A property of exponential stability in nonlinear wave equations near the fundamental linear mode , 1998 .

[88]  V. I. Arnolʹd,et al.  Ergodic problems of classical mechanics , 1968 .

[89]  D. Armbruster,et al.  "Perturbation Methods, Bifurcation Theory and Computer Algebra" , 1987 .

[90]  N N Nekhoroshev,et al.  AN EXPONENTIAL ESTIMATE OF THE TIME OF STABILITY OF NEARLY-INTEGRABLE HAMILTONIAN SYSTEMS , 1977 .

[91]  Claude Viterbo,et al.  An introduction to symplectic topology , 1991 .

[92]  C. G. Broyden A Class of Methods for Solving Nonlinear Simultaneous Equations , 1965 .

[93]  C. E. Wayne Bounds on the trajectories of a system of weakly coupled rotators , 1986 .

[94]  José Carlos Goulart de Siqueira,et al.  Differential Equations , 1919, Nature.

[95]  J. Moser Minimal solutions of variational problems on a torus , 1986 .

[96]  P. Perfetti A KAM theorem for infinite--dimensional discrete systems , 2003 .

[97]  J. Moser On invariant curves of area-preserving mappings of an anulus , 1962 .

[98]  Y. Katznelson,et al.  The absolute continuity of the conjugation of certain diffeomorphisms of the circle , 1989, Ergodic Theory and Dynamical Systems.

[99]  P. Deligne Les difféomorphismes du cercle [d’après M. R. Herman] , 1977 .

[100]  D. Gomes Viscosity Solutions and Aubry-Mather theory , 2003 .

[101]  R. Moriyón Regularity of the dirichlet problem for the degenerate complex Monge-Ampère equation , 1982 .

[102]  Marek Rychlik Renormalization of cocycles and linear ODE with almost-periodic coefficients , 1992 .

[103]  R. Barrar Convergence of the von Zeipel procedure , 1970 .

[104]  G. B.,et al.  A Treatise on the Analytical Dynamics of Particles and Rigid Bodies: with an introduction to the Problem of Three Bodies , 1918, Nature.

[105]  Marco Pettini,et al.  THE FERMI-PASTA-ULAM PROBLEM REVISITED : STOCHASTICITY THRESHOLDS IN NONLINEAR HAMILTONIAN SYSTEMS , 1996, chao-dyn/9609017.

[106]  J. Rakotoson,et al.  Ann.Inst.Fourier Grenoble , 2000 .

[107]  Antti Kupiainen,et al.  KAM Theorem and Quantum Field Theory , 1999 .

[108]  Richard S. Hamilton,et al.  The inverse function theorem of Nash and Moser , 1982 .

[109]  George Huitema,et al.  Quasi-Periodic Motions in Families of Dynamical Systems: Order amidst Chaos , 2002 .

[110]  KAM theory in momentum space and quasiperiodic Schrödinger operators , 1993 .

[111]  A. Katok Periodic and Quasi-Periodic Orbits for Twist Maps , 2020, Hamiltonian Dynamical Systems.

[112]  Konstantin Khanin,et al.  A new proof of M. Herman's theorem , 1987 .

[113]  R. Tibshirani,et al.  An introduction to the bootstrap , 1993 .

[114]  Kenneth R. Meyer Lie Transform Tutorial — II , 1991 .

[115]  B. M. Fulk MATH , 1992 .

[116]  A renormalization proof of Siegel's theorem , 1994 .

[117]  Alexander Mielke,et al.  Hamiltonian and Lagrangian Flows on Center Manifolds: with Applications to Elliptic Variational Problems , 1991 .

[118]  D. Ornstein,et al.  A new method for twist theorems , 1993 .

[119]  G. Benettin,et al.  Classical perturbation theory for systems of weakly coupled rotators , 1985 .

[120]  M. B. Sevryuk,et al.  Kam-stable Hamiltonians , 1995 .

[121]  On Nekhoroshev's estimate at an elliptic equilibrium , 1999 .

[122]  S. Orszag,et al.  Advanced Mathematical Methods For Scientists And Engineers , 1979 .

[123]  P. Strevens Iii , 1985 .

[124]  Li Yong,et al.  Existence of Higher Dimensional Invariant Tori for Hamiltonian Systems , 1998 .

[125]  George Huitema,et al.  Families of quasi-periodic motions in dynamical systems depending on parameters , 1996 .

[126]  G. Benettin,et al.  A proof of Nekhoroshev's theorem for the stability times in nearly integrable Hamiltonian systems , 1985 .

[127]  A. Valdés,et al.  Effective stability and KAM theory , 1995 .

[128]  Guido Gentile,et al.  Scaling properties for the radius of convergence of Lindstedt series: Generalized standard maps , 2000 .

[129]  Luigi Chierchia,et al.  A Constructive Theory of Lagrangian Tori and Computer-assisted Applications , 1995 .

[130]  Angel Jorbayx,et al.  On the normal behaviour of partially elliptic lower-dimensional tori of Hamiltonian systems , 1997 .

[131]  Sergej B. Kuksin,et al.  Nearly Integrable Infinite-Dimensional Hamiltonian Systems , 1993 .

[132]  J. Pöschel,et al.  On the Inclusion of Analytic Symplectic Maps in Analytic Hamiltonian Flows and Its Applications , 1994 .

[133]  J. Davenport Editor , 1960 .

[134]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[135]  Alberto Berretti,et al.  Scaling, perturbative renormalization and analyticity for the standard map and some generalizations , 1995 .

[136]  A. Avez,et al.  Ergodic theory of dynamical systems , 1966 .

[137]  J. Stark Smooth conjugacy and renormalisation for diffeomorphisms of the circle , 1988 .

[138]  E. Valdinoci Estimates for Non-Resonant Normal Forms in Hamiltonian Perturbation Theory , 2000 .

[139]  David DeLatte Diophantine conditions for the linearization of commuting holomorphic functions , 1997 .

[140]  William H. Press,et al.  Numerical recipes in C , 2002 .

[141]  P. Lions,et al.  Some Properties of Viscosity Solutions of Hamilton-Jacobi Equations. , 1984 .

[142]  P. Lochak,et al.  Estimates of stability time for nearly integrable systems with a quasiconvex Hamiltonian. , 1992, Chaos.

[143]  J. Fröhlich,et al.  Absence of diffusion in the Anderson tight binding model for large disorder or low energy , 1983 .

[144]  Application of Newton's method to Lagrangian mappings , 1989 .

[145]  Jürgen Moser,et al.  Convergent series expansions for quasi-periodic motions , 1967 .

[146]  M. R. Herman Exemples de flots hamiltoniens dont aucune perturbation en topologie C∞ n'a d'orbites périodiques sur un ouvert de surfaces d'énergies , 1991 .

[147]  J. Mather,et al.  Existence of quasi-periodic orbits for twist homeomorphisms of the annulus , 1982 .

[148]  D. Saari,et al.  Stable and Random Motions in Dynamical Systems , 1975 .

[149]  L. Eliasson Perturbations of linear quasi-periodic system , 2002 .

[150]  J. Yoccoz An Introduction To Small Divisors Problems , 1992 .

[151]  Joaquim Puig Cantor Spectrum for the Almost Mathieu Operator , 2004 .

[152]  June Mun Lai Loh The differentiability of the conjugation of certain diffeomorphisms of the circle , 1992 .

[153]  P J Fox,et al.  THE FOUNDATIONS OF MECHANICS. , 1918, Science.

[154]  Jürgen Moser,et al.  A rapidly convergent iteration method and non-linear differential equations = II , 1966 .

[155]  M. R. Herman Sur la Conjugaison Différentiable des Difféomorphismes du Cercle a des Rotations , 1979 .

[156]  Kenneth R. Meyer,et al.  Introduction to Hamiltonian Dynamical Systems and the N-Body Problem , 1991 .

[157]  Ramon E. Moore Methods and applications of interval analysis , 1979, SIAM studies in applied mathematics.

[158]  Y. Sinai,et al.  Smoothness of conjugacies of diffeomorphisms of the circle with rotations , 1989 .

[159]  G. Contreras,et al.  Lagrangian flows: The dynamics of globally minimizing orbits-II , 1997 .

[160]  S. Omohundro,et al.  Geometric Perturbation Theory In Physics , 1986 .

[161]  J. Vano A Nash-Moser implicit function theorem with Whitney regularity and applications , 2002 .

[162]  R. Moeckel Transition Tori in the Five-Body Problem , 1996 .

[163]  Walter Thirring,et al.  Classical Mathematical Physics , 1997 .

[164]  F. Beaufils,et al.  FRANCE , 1979, The Lancet.

[165]  William Kahan,et al.  Lecture Notes on the Status of IEEE Standard 754 for Binary Floating-Point Arithmetic , 1996 .

[166]  Renato Iturriaga,et al.  Lagrangian Graphs, Minimizing Measures and Mañé's Critical Values , 1998 .

[167]  R. Llave,et al.  Aubry-Mather theory for functions on lattices , 1996 .

[168]  J. Fröhlich,et al.  Localization for a class of one dimensional quasi-periodic Schrödinger operators , 1990 .

[169]  A. Neishtadt Estimates in the kolmogorov theorem on conservation of conditionally periodic motions , 1981 .

[170]  On nonperturbative localization with quasi-periodic potential , 2000, math-ph/0011053.

[171]  J. Mather Variational construction of connecting orbits , 1993 .

[172]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[173]  C. E. Wayne The KAM theory of systems with short range interactions, II , 1984 .

[174]  Stephen Wiggins,et al.  KAM tori are very sticky: rigorous lower bounds on the time to move away from an invariant Lagrangian torus with linear flow , 1994 .

[175]  M. J. D. Carneiro On minimizing measures of the action of autonomous Lagrangians , 1995 .

[176]  T. O’Neil Geometric Measure Theory , 2002 .

[177]  On invariant manifolds of complex analytic mappings near fixed points , 2002 .

[178]  Yongzhong Sun,et al.  Existence of KAM Tori in Degenerate Hamiltonian Systems , 1994 .

[179]  I. Percival Variational principles for the invariant toroids of classical dynamics , 1974 .

[180]  Hans Koch,et al.  A renormalization group for Hamiltonians, with applications to KAM tori , 1999, Ergodic Theory and Dynamical Systems.

[181]  Luigi Chierchia,et al.  A direct proof of a theorem by Kolmogorov in hamiltonian systems , 1994 .

[182]  B. Dundas,et al.  DIFFERENTIAL TOPOLOGY , 2002 .

[183]  Christophe Golé,et al.  SYMPLECTIC TWIST MAPS , 2001 .

[184]  A. D. Briuno,et al.  Local methods in nonlinear differential equations , 1989 .

[185]  G. Gallavotti Quasi-integrable mechanical systems , 2004 .

[186]  R. Llave A renormalization group explanation of numerical observations of analyticity domains , 1992 .

[187]  G. M. Clemence,et al.  Methods of Celestial Mechanics , 1962 .

[188]  C. Villani Topics in Optimal Transportation , 2003 .

[189]  Robert S. MacKay,et al.  Renormalisation in Area-Preserving Maps , 1993 .

[190]  J. Fröhlich,et al.  Perturbation theory for periodic orbits in a class of infinite dimensional Hamiltonian systems , 1991 .

[191]  J. Mather,et al.  Action minimizing orbits in hamiltomian systems , 1994 .

[192]  N. DeClaris,et al.  Asymptotic methods in the theory of non-linear oscillations , 1963 .

[193]  J. Cary LIE TRANSFORM PERTURBATION THEORY FOR HAMILTONIAN SYSTEMS , 1981 .

[194]  J. Pöschel,et al.  Small divisors with spatial structure in infinite dimensional Hamiltonian systems , 1990 .

[195]  J. Moser On the volume elements on a manifold , 1965 .

[196]  E. Zehnder,et al.  Generalized implicit function theorems with applications to some small divisor problems, I , 1976 .

[197]  R. Perez-Marco,et al.  Solution complète au problème de Siegel de linéarisation d'une application holomorphe au voisinage d'un point fixe (d'après J.-C. Yoccoz) , 1992 .

[198]  J. Pöschel,et al.  A KAM-theorem for some nonlinear partial differential equations , 1996 .

[199]  S. Aubry,et al.  The discrete Frenkel-Kontorova model and its extensions: I. Exact results for the ground-states , 1983 .

[200]  A. Fathi,et al.  Solutions KAM faibles conjugues et barrires de Peierls , 1997 .

[201]  H. Whitney Analytic Extensions of Differentiable Functions Defined in Closed Sets , 1934 .

[202]  R. Llave,et al.  A rigorous partial justification of Greene's criterion , 1992 .

[203]  R. Mañé,et al.  Lagrangian flows: The dynamics of globally minimizing orbits , 1997 .

[204]  Cohomology Equations near Hyperbolic Points and Geometric Versions of Sternberg Linearization Theorem , 1994 .

[205]  John M. Greene,et al.  A method for determining a stochastic transition , 1979, Hamiltonian Dynamical Systems.

[206]  A. D. Bryuno,et al.  An analytic form of differential equations , 1969 .

[207]  L. Chierchia,et al.  Second Order Hamiltonian Equations on T∞ and Almost-Periodic Solutions , 1995 .

[208]  L. Hörmander The Nash-Moser Theorem and Paradifferential Operators , 1990 .

[209]  Walter Craig,et al.  Newton's method and periodic solutions of nonlinear wave equations , 1993 .

[210]  Dario Bambusi,et al.  On long time stability in Hamiltonian perturbations of non-resonant linear PDEs , 1999 .

[211]  Eduard Zehnder,et al.  KAM theory in configuration space , 1989 .

[212]  R. Llave,et al.  KAM theory without action-angle variables , 2005 .

[213]  H. Rüssmann On a new proof of Moser's twist mapping theorem , 1976 .

[214]  V. Bangert Mather Sets for Twist Maps and Geodesics on Tori , 1988 .

[215]  Chong-Qing Cheng,et al.  Existence of invariant tori in three-dimensional measure-preserving mappings , 1989 .

[216]  A. S. Pyartli Diophantine approximations on submanifolds of Euclidean space , 1969 .

[217]  G. Paternain,et al.  Connecting orbits between static classes for generic Lagrangian systems , 2002 .

[218]  J. Meiss Symplectic maps, variational principles, and transport , 1992 .

[219]  R. Douady Regular dependence of invariant curves and Aubry–Mather sets of twist maps of an annulus , 1988, Ergodic Theory and Dynamical Systems.

[220]  C. Liverani,et al.  Improved KAM estimates for the Siegel radius , 1986 .

[221]  M. Born Principles of Optics : Electromagnetic theory of propagation , 1970 .

[222]  L. Eliasson Discrete one-dimensional quasi-periodic Schrödinger operators with pure point spectrum , 1997 .

[223]  J. Mather Stability of C ∞ Mappings: II. Infinitesimal Stability Implies Stability , 1969 .

[224]  M. Sevryuk The Lack-of-Parameters Problem in the Kam Theory Revisited , 1999 .

[225]  Irwin Jungreis,et al.  A method for proving that monotone twist maps have no invariant circles , 1991, Ergodic Theory and Dynamical Systems.

[226]  Vimal Singh,et al.  Perturbation methods , 1991 .

[227]  A. Stirnemann Towards an Existence Proof of MacKay's Fixed Point , 1997 .

[228]  P. Blanchard Complex analytic dynamics on the Riemann sphere , 1984 .

[229]  G. Benettin,et al.  A proof of Kolmogorov’s theorem on invariant tori using canonical transformations defined by the Lie method , 1984 .

[230]  I. Parasyuk Conservation of multidimensional invariant tori of Hamiltonian systems , 1984 .

[231]  C. Eugene Wayne,et al.  An Introduction to KAM Theory , 1994 .

[232]  Stefan Friedrich,et al.  Topology , 2019, Arch. Formal Proofs.

[233]  H. Rüssmann Note on sums containing small divisors , 1976 .

[234]  J. Fröhlich,et al.  A rigorous approach to Anderson localization , 1984 .

[235]  G. Gentile,et al.  Majorant series convergence for twistless KAM tori , 1995, Ergodic Theory and Dynamical Systems.

[236]  Y. Sinai,et al.  The one-dimensional Schrödinger equation with a quasiperiodic potential , 1975 .

[237]  Rafael de la Llave,et al.  Numerical calculation of domains of analyticity for perturbation theories in the presence of small divisors , 1992 .

[238]  Stathis Tompaidis,et al.  Numerical Study of Invariant Sets of a Quasiperiodic Perturbation of a Symplectic Map , 1996, Exp. Math..

[239]  A. Mielke Hamiltonian and Lagrangian Flows on Center Manifolds , 1991 .

[240]  Jean-Christophe Yoccoz,et al.  Travaux de Herman sur les tores invariants , 1992 .

[241]  V. Bangert On minimal laminations of the torus , 1989 .

[242]  A. Berretti,et al.  Natural boundaries for area-preserving twist maps , 1992 .

[243]  Jean-Christophe Yoccoz,et al.  Analytic linearization of circle diffeomorphisms , 2002 .

[244]  Edmund Taylor Whittaker,et al.  A treatise on the analytical dynamics of particles and rigid bodies , 1927 .

[245]  A. Katok Entropy and closed geodesies , 1982, Ergodic Theory and Dynamical Systems.

[246]  W. Craig,et al.  Periodic Solutions of Nonlinear Schrödinger Equations and the Nash-Moser Method , 1994 .

[247]  J. Fröhlich,et al.  Periodic solutions of some infinite-dimensional Hamiltonian systems associated with non-linear partial difference equations. II , 1988 .

[248]  Haro,et al.  New mechanisms for lack of equipartition of energy , 2000, Physical review letters.

[249]  A. Celletti,et al.  On the Stability of Realistic Three-Body Problems , 1997 .

[250]  Ricardo Perez-Marco,et al.  Convergence or generic divergence of the Birkhoff normal form , 2003 .

[251]  J. Moser A rapidly convergent iteration method and non-linear partial differential equations - I , 1966 .

[252]  G. Gallavotti Perturbation Theory for Classical Hamiltonian Systems , 1983 .

[253]  O. Lanford A computer-assisted proof of the Feigenbaum conjectures , 1982 .

[254]  H. Rüssmann On optimal estimates for the solutions of linear difference equations on the circle , 1976 .

[255]  M. R. Herman,et al.  Sur les courbes invariantes par les difféomorphismes de l'anneau. 2 , 1983 .

[256]  R. Llave,et al.  Regularity of the composition operator in spaces of Hölder functions , 1998 .

[257]  David G. Sullivan,et al.  Solution of the Fatou - Julia problem on wandering domains , 1985 .

[258]  C. E. Wayne The KAM theory of systems with short range interactions, I , 1984 .

[259]  J. Moser A stability theorem for minimal foliations on a torus , 1988, Ergodic Theory and Dynamical Systems.

[260]  L. Hörmander,et al.  On the Nash-Moser implicit function theorem , 1985 .

[261]  I. C. Percival,et al.  Converse KAM: Theory and practice , 1985 .

[262]  Stefano Marmi,et al.  The Brjuno Functions and Their Regularity Properties , 1997 .

[263]  Ole H. Hald On a Newton-Moser type method , 1975 .

[264]  R. Llave,et al.  Lindstedt series for lower dimensional tori , 1999 .

[265]  Harold Levine,et al.  Singularities of differentiable mappings , 1971 .

[266]  L. H. Eliasson,et al.  Absolutely convergent series expansions for quasi periodic motions. , 1996 .

[267]  鈴木 麻美,et al.  「On the Iteration of Analytic Functions」(木村俊房先生の仕事から) , 1998 .

[268]  John M. Finn,et al.  Lie Series and Invariant Functions for Analytic Symplectic Maps , 1976 .

[269]  Cantor Spectrum for the Almost Mathieu Operator. Corollaries of localization,reducibility and duality , 2003, math-ph/0309004.

[270]  S. Angenent Monotone recurrence relations, their Birkhoff orbits and topological entropy , 1990, Ergodic Theory and Dynamical Systems.

[271]  E. M. Lifshitz,et al.  Course in Theoretical Physics , 2013 .

[272]  Kenneth R. Meyer,et al.  Generic Hamiltonian dynamical systems are neither integrable nor ergodic , 1974 .

[273]  G. A. Hedlund Geodesics on a Two-Dimensional Riemannian Manifold With Periodic Coefficients , 1932 .

[274]  H. Cremer Über die Häufigkeit der Nichtzentren , 1938 .

[275]  J. W. Humberston Classical mechanics , 1980, Nature.

[276]  Y. Bibikov,et al.  Local Theory of Nonlinear Analytic Ordinary Differential Equations , 1979 .

[277]  Giovanni Gallavotti,et al.  Twistless KAM tori , 1993, chao-dyn/9306003.

[278]  Joaquim Puig Reducibility of linear equations with quasi-periodic coefficients. A survey , 2002 .

[279]  V. I. Arnol'd,et al.  PROOF OF A THEOREM OF A.?N.?KOLMOGOROV ON THE INVARIANCE OF QUASI-PERIODIC MOTIONS UNDER SMALL PERTURBATIONS OF THE HAMILTONIAN , 1963 .

[280]  R. Llave,et al.  Canonical perturbation theory of Anosov systems, and regularity results for the Livsic cohomology equation , 1985 .

[281]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[282]  Haifa,et al.  Almost Everything about the Almost Mathieu Operator I* , 1995 .

[283]  J Stark,et al.  On the standard map critical function , 1992 .

[284]  George Huitema,et al.  Quasi-periodic motions in families of dynamical systems , 1996 .