A Tutorial on Kam Theory
暂无分享,去创建一个
[1] Donald E. Knuth. The Art of Computer Programming 2 / Seminumerical Algorithms , 1971 .
[2] On the Validity of the Conjugate Pairing Rule for Lyapunov Exponents , 1998, chao-dyn/9803011.
[3] Zhihong Xia. Existence of invariant tori in volume-preserving diffeomorphisms , 1992, Ergodic Theory and Dynamical Systems.
[4] Y. Katznelson,et al. The differentiability of the conjugation of certain diffeomorphisms of the circle , 1989, Ergodic Theory and Dynamical Systems.
[5] R. Llave,et al. Smooth conjugacy and S-R-B measures for uniformly and non-uniformly hyperbolic systems , 1992 .
[6] J. Zukas. Introduction to the Modern Theory of Dynamical Systems , 1998 .
[7] V. Arnold. SMALL DENOMINATORS AND PROBLEMS OF STABILITY OF MOTION IN CLASSICAL AND CELESTIAL MECHANICS , 1963 .
[8] D. Salamon,et al. Kolmogorov–Arnold–Moser theorem , 2019, 100 Years of Math Milestones.
[9] I. Percival. A variational principle for invariant tori of fixed frequency , 1979 .
[10] G. Benettin,et al. Numerical investigations on a chain of weakly coupled rotators in the light of classical perturbation theory , 1985 .
[11] S. Aubry. The twist map, the extended Frenkel-Kontorova model and the devil's staircase , 1983 .
[12] Donald Ervin Knuth,et al. The Art of Computer Programming, Volume II: Seminumerical Algorithms , 1970 .
[13] V. Arnold,et al. Mathematical aspects of classical and celestial mechanics , 1997 .
[14] André Deprit,et al. Canonical transformations depending on a small parameter , 1969 .
[15] J. Fröhlich,et al. Periodic solutions of some infinite-dimensional Hamiltonian systems associated with non-linear partial difference equations I , 1988 .
[16] D. Schmidt. Computing the Motion of the Moon Accurately , 1995 .
[17] Gene H. Golub,et al. Matrix computations , 1983 .
[18] A. Davie,et al. The critical function for the semistandard map , 1994 .
[19] Hassler Whitney,et al. Differentiable Functions Defined in Closed Sets. I , 1934 .
[20] Helmut Rüssmann,et al. On optimal estimates for the solutions of linear partial differential equations of first order with constant coefficients on the torus , 1975 .
[21] Jean Bourgain,et al. Anderson localization for Schrödinger operators on Z2 with quasi-periodic potential , 2002 .
[22] Harold Marston Morse. A fundamental class of geodesics on any closed surface of genus greater than one , 1924 .
[23] T. M. Seara,et al. A geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem: heuristics and rigorous verification on a model. , 2003 .
[24] J. Fröhlich,et al. Localization in disordered, nonlinear dynamical systems , 1986 .
[25] Willard L. Miranker,et al. Self-Validating Numerics for Function Space Problems , 1984 .
[26] E. Zehnder. Moser's implicit function theorem in the framework of analytic smoothing , 1976 .
[27] Helmut Rüssmann,et al. Number Theory and Dynamical Systems: Non-degeneracy in the perturbation theory of integrable dynamical systems , 1989 .
[28] D. Braess,et al. On the numerical treatment of a small divisor problem , 1982 .
[29] Ricardo Pérez Marco,et al. Sur les dynamiques holomorphes non linéarisables et une conjecture de V. I. Arnold , 1993 .
[30] M. Sevryuk. The finite-dimensional reversible KAM theory , 1998 .
[31] J. Yoccoz,et al. Conjugaison différentiable des difféomorphismes du cercle dont le nombre de rotation vérifie une condition diophantienne , 1984 .
[32] Verzekeren Naar Sparen,et al. Cambridge , 1969, Humphrey Burton: In My Own Time.
[33] G. Benettin,et al. Nekhoroshev-Stability of Elliptic Equilibria of Hamiltonian Systems , 1998 .
[34] A simple proof of a generalization of a theorem by C. L. Siegel , 1977 .
[35] J. Pöschel. On the construction of almost periodic solutions for a nonlinear Schrödinger equation , 2002, Ergodic Theory and Dynamical Systems.
[36] P. Gérard,et al. Opérateurs pseudo-différentiels et théorème de Nash-Moser , 1991 .
[37] Henri Poincaré,et al. New methods of celestial mechanics , 1967 .
[38] R. Kannan,et al. Periodic solutions of nonlinear wave equations , 1983 .
[39] J. Bost. Tores invariants des systèmes dynamiques hamiltoniens , 1985 .
[40] Vladimir Igorevich Arnold,et al. Geometrical Methods in the Theory of Ordinary Differential Equations , 1983 .
[41] Àngel Jorba,et al. On the reducibility of linear differential equations with quasiperiodic coefficients , 1992 .
[42] N. Haydn. On invariant curves under renormalisation , 1990 .
[43] H. Broer,et al. A proof of the isoenergetic KAM-theorem from the “ordinary” one , 1991 .
[44] Ugo Bessi. An approach to Arnold's diffusion through the calculus of variations , 1996 .
[45] Fernando Bertolini,et al. Le funzioni misurabili di ultrafiltro come elementi di un reticolo lineare numerabilmente completo , 1961 .
[46] L. Niederman. Nonlinear stability around an elliptic equilibrium point in a Hamiltonian system , 1998 .
[47] J. Schwartz. Nonlinear Functional Analysis , 1969 .
[48] P. Calvez. Propriétés générales des applications déviant la verticale , 1989 .
[49] J. Nash. The imbedding problem for Riemannian manifolds , 1956 .
[50] J. Moser,et al. An extension of a result by Dinaburg and Sinai on quasi-periodic potentials , 1984 .
[51] Dario Bambusi,et al. Nekhoroshev theorem for small amplitude solutions in nonlinear Schrödinger equations , 1999 .
[52] J. Kovalevsky,et al. Lectures in celestial mechanics , 1989 .
[53] J. Mather. Destruction of invariant circles , 1988, Ergodic Theory and Dynamical Systems.
[54] M. Blank. Metric properties of minimal solutions of discrete periodical variational problems , 1989 .
[55] A. Jorba,et al. On the normal behaviour of partially elliptic lower-dimensional tori of Hamiltonian systems , 1997 .
[56] C. Simó,et al. Effective Computations in Celestial Mechanics and Astrodynamics , 1998 .
[57] Jürgen Pöschel,et al. Integrability of Hamiltonian systems on cantor sets , 1982 .
[58] C. Siegel. Über die Existenz einer Normalform analytischerHamiltonscher Differentialgleichungen in der Nähe einer Gleichgewichtslösung , 1954 .
[59] J. Pöschel,et al. Nekhoroshev estimates for quasi-convex hamiltonian systems , 1993 .
[60] Giovanni Gallavotti,et al. TWISTLESS KAM TORI, QUASI FLAT HOMOCLINIC INTERSECTIONS, AND OTHER CANCELLATIONS IN THE PERTURBATION SERIES OF CERTAIN COMPLETELY INTEGRABLE HAMILTONIAN SYSTEMS: A REVIEW , 1993, chao-dyn/9304012.
[61] A simple proof of a particular case of C. Siegel’s center theorem , 1983 .
[62] L. Chierchia,et al. Smooth prime integrals for quasi-integrable Hamiltonian systems , 1982 .
[63] C. Meunier,et al. Multiphase Averaging for Classical Systems , 1988 .
[64] Jean Bourgain,et al. On nonlinear Schrödinger equations , 1998 .
[65] Dominique Escande,et al. Renormalization method for computing the threshold of the large-scale stochastic instability in two degrees of freedom Hamiltonian systems , 1981 .
[66] Y. Sinai,et al. THE EXPONENTIAL LOCALIZATION AND STRUCTURE OF THE SPECTRUM FOR 1D QUASI-PERIODIC DISCRETE SCHRÖDINGER OPERATORS , 1991 .
[67] M. Blank. Chaos and order in the multidimensional Frenkel-Kontorova model , 1990 .
[68] J. Moser,et al. On a partial differential equation involving the Jacobian determinant , 1990 .
[69] J. Bourgain. On Melnikov’s persistency problem , 1997 .
[70] I. Percival,et al. Hamiltonian maps in the complex plane , 1981 .
[71] Àngel Jorba,et al. On the Persistence of Lower Dimensional Invariant Tori under Quasi-Periodic Perturbations , 1997 .
[72] J. Moser. On the persistence of pseudo-holomorphic curves on an almost complex torus (with an appendix by Jürgen Pöschel) , 1995 .
[73] P. Steerenberg,et al. Targeting pathophysiological rhythms: prednisone chronotherapy shows sustained efficacy in rheumatoid arthritis. , 2010, Annals of the rheumatic diseases.
[74] S. A. Sherman,et al. Providence , 1906 .
[75] A. Kolmogorov. On conservation of conditionally periodic motions for a small change in Hamilton's function , 1954 .
[76] L. Chierchia,et al. A note on quasi-periodic solutions of some elliptic systems , 1996 .
[77] P. Lions. Generalized Solutions of Hamilton-Jacobi Equations , 1982 .
[78] Rafael de la Llave,et al. Planelike minimizers in periodic media , 2001 .
[79] R. de la Llave,et al. Accurate Strategies for K.A.M. Bounds and Their Implementation , 1991 .
[80] R. Krikorian. Réductibilité des systèmes produits-croisés à valeurs dans des groupes compacts , 1999 .
[81] A. Fathi,et al. Théorème KAM faible et théorie de Mather sur les systèmes lagrangiens , 1997 .
[82] F. Fass. On the Stability of Elliptic Equilibria , 1998 .
[83] Angel Jorba,et al. A Methodology for the Numerical Computation of Normal Forms, Centre Manifolds and First Integrals of Hamiltonian Systems , 1999, Exp. Math..
[84] R. de la Llave,et al. On the Aubry–Mather Theory in Statistical Mechanics , 1998 .
[85] Peter Wittwer,et al. Computer-Assisted Proofs in Analysis and Programming in Logic: A case Study , 1996, SIAM Rev..
[86] R. Llave,et al. Canonical perturbation theory of Anosov systems and regularity results for the Livsic cohomology equation , 1986 .
[87] D. Bambusi,et al. A property of exponential stability in nonlinear wave equations near the fundamental linear mode , 1998 .
[88] V. I. Arnolʹd,et al. Ergodic problems of classical mechanics , 1968 .
[89] D. Armbruster,et al. "Perturbation Methods, Bifurcation Theory and Computer Algebra" , 1987 .
[90] N N Nekhoroshev,et al. AN EXPONENTIAL ESTIMATE OF THE TIME OF STABILITY OF NEARLY-INTEGRABLE HAMILTONIAN SYSTEMS , 1977 .
[91] Claude Viterbo,et al. An introduction to symplectic topology , 1991 .
[92] C. G. Broyden. A Class of Methods for Solving Nonlinear Simultaneous Equations , 1965 .
[93] C. E. Wayne. Bounds on the trajectories of a system of weakly coupled rotators , 1986 .
[94] José Carlos Goulart de Siqueira,et al. Differential Equations , 1919, Nature.
[95] J. Moser. Minimal solutions of variational problems on a torus , 1986 .
[96] P. Perfetti. A KAM theorem for infinite--dimensional discrete systems , 2003 .
[97] J. Moser. On invariant curves of area-preserving mappings of an anulus , 1962 .
[98] Y. Katznelson,et al. The absolute continuity of the conjugation of certain diffeomorphisms of the circle , 1989, Ergodic Theory and Dynamical Systems.
[99] P. Deligne. Les difféomorphismes du cercle [d’après M. R. Herman] , 1977 .
[100] D. Gomes. Viscosity Solutions and Aubry-Mather theory , 2003 .
[101] R. Moriyón. Regularity of the dirichlet problem for the degenerate complex Monge-Ampère equation , 1982 .
[102] Marek Rychlik. Renormalization of cocycles and linear ODE with almost-periodic coefficients , 1992 .
[103] R. Barrar. Convergence of the von Zeipel procedure , 1970 .
[104] G. B.,et al. A Treatise on the Analytical Dynamics of Particles and Rigid Bodies: with an introduction to the Problem of Three Bodies , 1918, Nature.
[105] Marco Pettini,et al. THE FERMI-PASTA-ULAM PROBLEM REVISITED : STOCHASTICITY THRESHOLDS IN NONLINEAR HAMILTONIAN SYSTEMS , 1996, chao-dyn/9609017.
[106] J. Rakotoson,et al. Ann.Inst.Fourier Grenoble , 2000 .
[107] Antti Kupiainen,et al. KAM Theorem and Quantum Field Theory , 1999 .
[108] Richard S. Hamilton,et al. The inverse function theorem of Nash and Moser , 1982 .
[109] George Huitema,et al. Quasi-Periodic Motions in Families of Dynamical Systems: Order amidst Chaos , 2002 .
[110] KAM theory in momentum space and quasiperiodic Schrödinger operators , 1993 .
[111] A. Katok. Periodic and Quasi-Periodic Orbits for Twist Maps , 2020, Hamiltonian Dynamical Systems.
[112] Konstantin Khanin,et al. A new proof of M. Herman's theorem , 1987 .
[113] R. Tibshirani,et al. An introduction to the bootstrap , 1993 .
[114] Kenneth R. Meyer. Lie Transform Tutorial — II , 1991 .
[115] B. M. Fulk. MATH , 1992 .
[116] A renormalization proof of Siegel's theorem , 1994 .
[117] Alexander Mielke,et al. Hamiltonian and Lagrangian Flows on Center Manifolds: with Applications to Elliptic Variational Problems , 1991 .
[118] D. Ornstein,et al. A new method for twist theorems , 1993 .
[119] G. Benettin,et al. Classical perturbation theory for systems of weakly coupled rotators , 1985 .
[120] M. B. Sevryuk,et al. Kam-stable Hamiltonians , 1995 .
[121] On Nekhoroshev's estimate at an elliptic equilibrium , 1999 .
[122] S. Orszag,et al. Advanced Mathematical Methods For Scientists And Engineers , 1979 .
[123] P. Strevens. Iii , 1985 .
[124] Li Yong,et al. Existence of Higher Dimensional Invariant Tori for Hamiltonian Systems , 1998 .
[125] George Huitema,et al. Families of quasi-periodic motions in dynamical systems depending on parameters , 1996 .
[126] G. Benettin,et al. A proof of Nekhoroshev's theorem for the stability times in nearly integrable Hamiltonian systems , 1985 .
[127] A. Valdés,et al. Effective stability and KAM theory , 1995 .
[128] Guido Gentile,et al. Scaling properties for the radius of convergence of Lindstedt series: Generalized standard maps , 2000 .
[129] Luigi Chierchia,et al. A Constructive Theory of Lagrangian Tori and Computer-assisted Applications , 1995 .
[130] Angel Jorbayx,et al. On the normal behaviour of partially elliptic lower-dimensional tori of Hamiltonian systems , 1997 .
[131] Sergej B. Kuksin,et al. Nearly Integrable Infinite-Dimensional Hamiltonian Systems , 1993 .
[132] J. Pöschel,et al. On the Inclusion of Analytic Symplectic Maps in Analytic Hamiltonian Flows and Its Applications , 1994 .
[133] J. Davenport. Editor , 1960 .
[134] Donald Ervin Knuth,et al. The Art of Computer Programming , 1968 .
[135] Alberto Berretti,et al. Scaling, perturbative renormalization and analyticity for the standard map and some generalizations , 1995 .
[136] A. Avez,et al. Ergodic theory of dynamical systems , 1966 .
[137] J. Stark. Smooth conjugacy and renormalisation for diffeomorphisms of the circle , 1988 .
[138] E. Valdinoci. Estimates for Non-Resonant Normal Forms in Hamiltonian Perturbation Theory , 2000 .
[139] David DeLatte. Diophantine conditions for the linearization of commuting holomorphic functions , 1997 .
[140] William H. Press,et al. Numerical recipes in C , 2002 .
[141] P. Lions,et al. Some Properties of Viscosity Solutions of Hamilton-Jacobi Equations. , 1984 .
[142] P. Lochak,et al. Estimates of stability time for nearly integrable systems with a quasiconvex Hamiltonian. , 1992, Chaos.
[143] J. Fröhlich,et al. Absence of diffusion in the Anderson tight binding model for large disorder or low energy , 1983 .
[144] Application of Newton's method to Lagrangian mappings , 1989 .
[145] Jürgen Moser,et al. Convergent series expansions for quasi-periodic motions , 1967 .
[146] M. R. Herman. Exemples de flots hamiltoniens dont aucune perturbation en topologie C∞ n'a d'orbites périodiques sur un ouvert de surfaces d'énergies , 1991 .
[147] J. Mather,et al. Existence of quasi-periodic orbits for twist homeomorphisms of the annulus , 1982 .
[148] D. Saari,et al. Stable and Random Motions in Dynamical Systems , 1975 .
[149] L. Eliasson. Perturbations of linear quasi-periodic system , 2002 .
[150] J. Yoccoz. An Introduction To Small Divisors Problems , 1992 .
[151] Joaquim Puig. Cantor Spectrum for the Almost Mathieu Operator , 2004 .
[152] June Mun Lai Loh. The differentiability of the conjugation of certain diffeomorphisms of the circle , 1992 .
[153] P J Fox,et al. THE FOUNDATIONS OF MECHANICS. , 1918, Science.
[154] Jürgen Moser,et al. A rapidly convergent iteration method and non-linear differential equations = II , 1966 .
[155] M. R. Herman. Sur la Conjugaison Différentiable des Difféomorphismes du Cercle a des Rotations , 1979 .
[156] Kenneth R. Meyer,et al. Introduction to Hamiltonian Dynamical Systems and the N-Body Problem , 1991 .
[157] Ramon E. Moore. Methods and applications of interval analysis , 1979, SIAM studies in applied mathematics.
[158] Y. Sinai,et al. Smoothness of conjugacies of diffeomorphisms of the circle with rotations , 1989 .
[159] G. Contreras,et al. Lagrangian flows: The dynamics of globally minimizing orbits-II , 1997 .
[160] S. Omohundro,et al. Geometric Perturbation Theory In Physics , 1986 .
[161] J. Vano. A Nash-Moser implicit function theorem with Whitney regularity and applications , 2002 .
[162] R. Moeckel. Transition Tori in the Five-Body Problem , 1996 .
[163] Walter Thirring,et al. Classical Mathematical Physics , 1997 .
[164] F. Beaufils,et al. FRANCE , 1979, The Lancet.
[165] William Kahan,et al. Lecture Notes on the Status of IEEE Standard 754 for Binary Floating-Point Arithmetic , 1996 .
[166] Renato Iturriaga,et al. Lagrangian Graphs, Minimizing Measures and Mañé's Critical Values , 1998 .
[167] R. Llave,et al. Aubry-Mather theory for functions on lattices , 1996 .
[168] J. Fröhlich,et al. Localization for a class of one dimensional quasi-periodic Schrödinger operators , 1990 .
[169] A. Neishtadt. Estimates in the kolmogorov theorem on conservation of conditionally periodic motions , 1981 .
[170] On nonperturbative localization with quasi-periodic potential , 2000, math-ph/0011053.
[171] J. Mather. Variational construction of connecting orbits , 1993 .
[172] J. Cooper. SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .
[173] C. E. Wayne. The KAM theory of systems with short range interactions, II , 1984 .
[174] Stephen Wiggins,et al. KAM tori are very sticky: rigorous lower bounds on the time to move away from an invariant Lagrangian torus with linear flow , 1994 .
[175] M. J. D. Carneiro. On minimizing measures of the action of autonomous Lagrangians , 1995 .
[176] T. O’Neil. Geometric Measure Theory , 2002 .
[177] On invariant manifolds of complex analytic mappings near fixed points , 2002 .
[178] Yongzhong Sun,et al. Existence of KAM Tori in Degenerate Hamiltonian Systems , 1994 .
[179] I. Percival. Variational principles for the invariant toroids of classical dynamics , 1974 .
[180] Hans Koch,et al. A renormalization group for Hamiltonians, with applications to KAM tori , 1999, Ergodic Theory and Dynamical Systems.
[181] Luigi Chierchia,et al. A direct proof of a theorem by Kolmogorov in hamiltonian systems , 1994 .
[182] B. Dundas,et al. DIFFERENTIAL TOPOLOGY , 2002 .
[183] Christophe Golé,et al. SYMPLECTIC TWIST MAPS , 2001 .
[184] A. D. Briuno,et al. Local methods in nonlinear differential equations , 1989 .
[185] G. Gallavotti. Quasi-integrable mechanical systems , 2004 .
[186] R. Llave. A renormalization group explanation of numerical observations of analyticity domains , 1992 .
[187] G. M. Clemence,et al. Methods of Celestial Mechanics , 1962 .
[188] C. Villani. Topics in Optimal Transportation , 2003 .
[189] Robert S. MacKay,et al. Renormalisation in Area-Preserving Maps , 1993 .
[190] J. Fröhlich,et al. Perturbation theory for periodic orbits in a class of infinite dimensional Hamiltonian systems , 1991 .
[191] J. Mather,et al. Action minimizing orbits in hamiltomian systems , 1994 .
[192] N. DeClaris,et al. Asymptotic methods in the theory of non-linear oscillations , 1963 .
[193] J. Cary. LIE TRANSFORM PERTURBATION THEORY FOR HAMILTONIAN SYSTEMS , 1981 .
[194] J. Pöschel,et al. Small divisors with spatial structure in infinite dimensional Hamiltonian systems , 1990 .
[195] J. Moser. On the volume elements on a manifold , 1965 .
[196] E. Zehnder,et al. Generalized implicit function theorems with applications to some small divisor problems, I , 1976 .
[197] R. Perez-Marco,et al. Solution complète au problème de Siegel de linéarisation d'une application holomorphe au voisinage d'un point fixe (d'après J.-C. Yoccoz) , 1992 .
[198] J. Pöschel,et al. A KAM-theorem for some nonlinear partial differential equations , 1996 .
[199] S. Aubry,et al. The discrete Frenkel-Kontorova model and its extensions: I. Exact results for the ground-states , 1983 .
[200] A. Fathi,et al. Solutions KAM faibles conjugues et barrires de Peierls , 1997 .
[201] H. Whitney. Analytic Extensions of Differentiable Functions Defined in Closed Sets , 1934 .
[202] R. Llave,et al. A rigorous partial justification of Greene's criterion , 1992 .
[203] R. Mañé,et al. Lagrangian flows: The dynamics of globally minimizing orbits , 1997 .
[204] Cohomology Equations near Hyperbolic Points and Geometric Versions of Sternberg Linearization Theorem , 1994 .
[205] John M. Greene,et al. A method for determining a stochastic transition , 1979, Hamiltonian Dynamical Systems.
[206] A. D. Bryuno,et al. An analytic form of differential equations , 1969 .
[207] L. Chierchia,et al. Second Order Hamiltonian Equations on T∞ and Almost-Periodic Solutions , 1995 .
[208] L. Hörmander. The Nash-Moser Theorem and Paradifferential Operators , 1990 .
[209] Walter Craig,et al. Newton's method and periodic solutions of nonlinear wave equations , 1993 .
[210] Dario Bambusi,et al. On long time stability in Hamiltonian perturbations of non-resonant linear PDEs , 1999 .
[211] Eduard Zehnder,et al. KAM theory in configuration space , 1989 .
[212] R. Llave,et al. KAM theory without action-angle variables , 2005 .
[213] H. Rüssmann. On a new proof of Moser's twist mapping theorem , 1976 .
[214] V. Bangert. Mather Sets for Twist Maps and Geodesics on Tori , 1988 .
[215] Chong-Qing Cheng,et al. Existence of invariant tori in three-dimensional measure-preserving mappings , 1989 .
[216] A. S. Pyartli. Diophantine approximations on submanifolds of Euclidean space , 1969 .
[217] G. Paternain,et al. Connecting orbits between static classes for generic Lagrangian systems , 2002 .
[218] J. Meiss. Symplectic maps, variational principles, and transport , 1992 .
[219] R. Douady. Regular dependence of invariant curves and Aubry–Mather sets of twist maps of an annulus , 1988, Ergodic Theory and Dynamical Systems.
[220] C. Liverani,et al. Improved KAM estimates for the Siegel radius , 1986 .
[221] M. Born. Principles of Optics : Electromagnetic theory of propagation , 1970 .
[222] L. Eliasson. Discrete one-dimensional quasi-periodic Schrödinger operators with pure point spectrum , 1997 .
[223] J. Mather. Stability of C ∞ Mappings: II. Infinitesimal Stability Implies Stability , 1969 .
[224] M. Sevryuk. The Lack-of-Parameters Problem in the Kam Theory Revisited , 1999 .
[225] Irwin Jungreis,et al. A method for proving that monotone twist maps have no invariant circles , 1991, Ergodic Theory and Dynamical Systems.
[226] Vimal Singh,et al. Perturbation methods , 1991 .
[227] A. Stirnemann. Towards an Existence Proof of MacKay's Fixed Point , 1997 .
[228] P. Blanchard. Complex analytic dynamics on the Riemann sphere , 1984 .
[229] G. Benettin,et al. A proof of Kolmogorov’s theorem on invariant tori using canonical transformations defined by the Lie method , 1984 .
[230] I. Parasyuk. Conservation of multidimensional invariant tori of Hamiltonian systems , 1984 .
[231] C. Eugene Wayne,et al. An Introduction to KAM Theory , 1994 .
[232] Stefan Friedrich,et al. Topology , 2019, Arch. Formal Proofs.
[233] H. Rüssmann. Note on sums containing small divisors , 1976 .
[234] J. Fröhlich,et al. A rigorous approach to Anderson localization , 1984 .
[235] G. Gentile,et al. Majorant series convergence for twistless KAM tori , 1995, Ergodic Theory and Dynamical Systems.
[236] Y. Sinai,et al. The one-dimensional Schrödinger equation with a quasiperiodic potential , 1975 .
[237] Rafael de la Llave,et al. Numerical calculation of domains of analyticity for perturbation theories in the presence of small divisors , 1992 .
[238] Stathis Tompaidis,et al. Numerical Study of Invariant Sets of a Quasiperiodic Perturbation of a Symplectic Map , 1996, Exp. Math..
[239] A. Mielke. Hamiltonian and Lagrangian Flows on Center Manifolds , 1991 .
[240] Jean-Christophe Yoccoz,et al. Travaux de Herman sur les tores invariants , 1992 .
[241] V. Bangert. On minimal laminations of the torus , 1989 .
[242] A. Berretti,et al. Natural boundaries for area-preserving twist maps , 1992 .
[243] Jean-Christophe Yoccoz,et al. Analytic linearization of circle diffeomorphisms , 2002 .
[244] Edmund Taylor Whittaker,et al. A treatise on the analytical dynamics of particles and rigid bodies , 1927 .
[245] A. Katok. Entropy and closed geodesies , 1982, Ergodic Theory and Dynamical Systems.
[246] W. Craig,et al. Periodic Solutions of Nonlinear Schrödinger Equations and the Nash-Moser Method , 1994 .
[247] J. Fröhlich,et al. Periodic solutions of some infinite-dimensional Hamiltonian systems associated with non-linear partial difference equations. II , 1988 .
[248] Haro,et al. New mechanisms for lack of equipartition of energy , 2000, Physical review letters.
[249] A. Celletti,et al. On the Stability of Realistic Three-Body Problems , 1997 .
[250] Ricardo Perez-Marco,et al. Convergence or generic divergence of the Birkhoff normal form , 2003 .
[251] J. Moser. A rapidly convergent iteration method and non-linear partial differential equations - I , 1966 .
[252] G. Gallavotti. Perturbation Theory for Classical Hamiltonian Systems , 1983 .
[253] O. Lanford. A computer-assisted proof of the Feigenbaum conjectures , 1982 .
[254] H. Rüssmann. On optimal estimates for the solutions of linear difference equations on the circle , 1976 .
[255] M. R. Herman,et al. Sur les courbes invariantes par les difféomorphismes de l'anneau. 2 , 1983 .
[256] R. Llave,et al. Regularity of the composition operator in spaces of Hölder functions , 1998 .
[257] David G. Sullivan,et al. Solution of the Fatou - Julia problem on wandering domains , 1985 .
[258] C. E. Wayne. The KAM theory of systems with short range interactions, I , 1984 .
[259] J. Moser. A stability theorem for minimal foliations on a torus , 1988, Ergodic Theory and Dynamical Systems.
[260] L. Hörmander,et al. On the Nash-Moser implicit function theorem , 1985 .
[261] I. C. Percival,et al. Converse KAM: Theory and practice , 1985 .
[262] Stefano Marmi,et al. The Brjuno Functions and Their Regularity Properties , 1997 .
[263] Ole H. Hald. On a Newton-Moser type method , 1975 .
[264] R. Llave,et al. Lindstedt series for lower dimensional tori , 1999 .
[265] Harold Levine,et al. Singularities of differentiable mappings , 1971 .
[266] L. H. Eliasson,et al. Absolutely convergent series expansions for quasi periodic motions. , 1996 .
[267] 鈴木 麻美,et al. 「On the Iteration of Analytic Functions」(木村俊房先生の仕事から) , 1998 .
[268] John M. Finn,et al. Lie Series and Invariant Functions for Analytic Symplectic Maps , 1976 .
[269] Cantor Spectrum for the Almost Mathieu Operator. Corollaries of localization,reducibility and duality , 2003, math-ph/0309004.
[270] S. Angenent. Monotone recurrence relations, their Birkhoff orbits and topological entropy , 1990, Ergodic Theory and Dynamical Systems.
[271] E. M. Lifshitz,et al. Course in Theoretical Physics , 2013 .
[272] Kenneth R. Meyer,et al. Generic Hamiltonian dynamical systems are neither integrable nor ergodic , 1974 .
[273] G. A. Hedlund. Geodesics on a Two-Dimensional Riemannian Manifold With Periodic Coefficients , 1932 .
[274] H. Cremer. Über die Häufigkeit der Nichtzentren , 1938 .
[275] J. W. Humberston. Classical mechanics , 1980, Nature.
[276] Y. Bibikov,et al. Local Theory of Nonlinear Analytic Ordinary Differential Equations , 1979 .
[277] Giovanni Gallavotti,et al. Twistless KAM tori , 1993, chao-dyn/9306003.
[278] Joaquim Puig. Reducibility of linear equations with quasi-periodic coefficients. A survey , 2002 .
[279] V. I. Arnol'd,et al. PROOF OF A THEOREM OF A.?N.?KOLMOGOROV ON THE INVARIANCE OF QUASI-PERIODIC MOTIONS UNDER SMALL PERTURBATIONS OF THE HAMILTONIAN , 1963 .
[280] R. Llave,et al. Canonical perturbation theory of Anosov systems, and regularity results for the Livsic cohomology equation , 1985 .
[281] V. Arnold. Mathematical Methods of Classical Mechanics , 1974 .
[282] Haifa,et al. Almost Everything about the Almost Mathieu Operator I* , 1995 .
[283] J Stark,et al. On the standard map critical function , 1992 .
[284] George Huitema,et al. Quasi-periodic motions in families of dynamical systems , 1996 .