Modular Materialisation of Datalog Programs

The semina\"ive algorithm can materialise all consequences of arbitrary datalog rules, and it also forms the basis for incremental algorithms that update a materialisation as the input facts change. Certain (combinations of) rules, however, can be handled much more efficiently using custom algorithms. To integrate such algorithms into a general reasoning approach that can handle arbitrary rules, we propose a modular framework for materialisation computation and its maintenance. We split a datalog program into modules that can be handled using specialised algorithms, and handle the remaining rules using the semina\"ive algorithm. We also present two algorithms for computing the transitive and the symmetric-transitive closure of a relation that can be used within our framework. Finally, we show empirically that our framework can handle arbitrary datalog programs while outperforming existing approaches, often by orders of magnitude.

[1]  Boris Motik,et al.  OWL 2 Web Ontology Language: structural specification and functional-style syntax , 2008 .

[2]  V. S. Subrahmanian,et al.  Maintaining views incrementally , 1993, SIGMOD Conference.

[3]  Yavor Nenov,et al.  Incremental Update of Datalog Materialisation: the Backward/Forward Algorithm , 2015, AAAI.

[4]  B. Motik,et al.  RDFox: A Highly-Scalable RDF Store , 2015, SEMWEB.

[5]  Barry Bishop,et al.  FactForge: A fast track to the Web of data , 2011, Semantic Web.

[6]  Barry Bishop,et al.  OWLIM: A family of scalable semantic repositories , 2011, Semantic Web.

[7]  Zhe Wu,et al.  Implementing an Inference Engine for RDFS/OWL Constructs and User-Defined Rules in Oracle , 2008, 2008 IEEE 24th International Conference on Data Engineering.

[8]  Giuseppe F. Italiano,et al.  Fully dynamic transitive closure: breaking through the O(n/sup 2/) barrier , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[9]  Frank van Harmelen,et al.  WebPIE: A Web-scale Parallel Inference Engine using MapReduce , 2012, J. Web Semant..

[10]  Jens Lehmann,et al.  DBpedia - A large-scale, multilingual knowledge base extracted from Wikipedia , 2015, Semantic Web.

[11]  Yavor Nenov,et al.  Parallel Materialisation of Datalog Programs in Centralised, Main-Memory RDF Systems , 2014, AAAI.

[12]  Valerie King,et al.  Fully dynamic algorithms for maintaining all-pairs shortest paths and transitive closure in digraphs , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[13]  Toshihide Ibaraki,et al.  On-Line Computation of Transitive Closures of Graphs , 1983, Inf. Process. Lett..

[14]  Jan van Leeuwen,et al.  Maintenance of Transitive Closures and Transitive Reductions of Graphs , 1987, WG.

[15]  Julien Subercaze,et al.  Inferray: fast in-memory RDF inference , 2016, Proc. VLDB Endow..

[16]  Matthias Jarke,et al.  Incremental Maintenance of Externally Materialized Views , 1996, VLDB.

[17]  Sean Bechhofer,et al.  SKOS Simple Knowledge Organization System Reference , 2009 .

[18]  Jianwen Su,et al.  Nonrecursive incremental evaluation of Datalog queries , 1995, Annals of Mathematics and Artificial Intelligence.

[19]  H. Lan,et al.  SWRL : A semantic Web rule language combining OWL and ruleML , 2004 .

[20]  Jacopo Urbani,et al.  Column-Oriented Datalog Materialization for Large Knowledge Graphs , 2016, AAAI.

[21]  Jeff Heflin,et al.  LUBM: A benchmark for OWL knowledge base systems , 2005, J. Web Semant..

[22]  Boris Motik,et al.  Optimised Maintenance of Datalog Materialisations , 2018, AAAI.

[23]  Serge Abiteboul,et al.  Foundations of Databases , 1994 .