Near-optimum control of distributed parameter systems via singular perturbation theory

[1]  P.K.C. Wang Control of Distributed Parameter Systems1 , 1964 .

[2]  D. M. Wiberg,et al.  Optimal Control of Nuclear Reactor Systems , 1967 .

[3]  P. Kokotovic,et al.  Singular perturbation method for reducing the model order in optimal control design , 1968 .

[4]  A. G. Butkovskiĭ,et al.  Distributed control systems , 1969 .

[5]  Gordon A. Phillipson Identification of distributed systems , 1971 .

[6]  J. Lions Optimal Control of Systems Governed by Partial Differential Equations , 1971 .

[7]  J. Lions Perturbations Singulières dans les Problèmes aux Limites et en Contrôle Optimal , 1973 .

[8]  Gunter H. Meyer,et al.  Initial value methods for boundary value problems , 1973 .

[9]  P. Kokotovic,et al.  A boundary layer method for the matrix Riccati equation , 1973 .

[10]  P. Kokotovic,et al.  Optimal open- and closed-loop control of singularly peturbed linear systems , 1973 .

[11]  T. Iwazumi,et al.  Optimal Feedback Control of a Nuclear Reactor as a Distributed Parameter System , 1973 .

[12]  K. Asatani Suboptimal control of fixed-end-point minimum energy problem via singular perturbation theory , 1974 .

[13]  K. Asatani Studies on Singular Perturbations of Optimal Control Systems with Applications to Nuclear Reactor Control , 1974 .

[14]  L. Segel,et al.  Introduction to Singular Perturbations. By R. E. O'MALLEY, JR. Academic Press, 1974. $ 16.50. , 1975, Journal of Fluid Mechanics.

[15]  K. Asatani,et al.  Suboptimal control of nuclear reactors with distributed parameters using singular perturbation theory , 1977 .